Top
Back: modStd
Forward: isMonomial
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.14 monomialideal_lib

Library:
monomialideal.lib
Purpose:
Primary and irreducible decompositions of monomial ideals
Authors:
I.Bermejo, ibermejo@ull.es
E.Garcia-Llorente, evgarcia@ull.es
Ph.Gimenez, pgimenez@agt.uva.es

Overview:
A library for computing a primary and the irreducible decompositions of a monomial ideal using several methods.
In this library we also take advantage of the fact that the ideal is monomial to make some computations that are Grobner free in this case (radical, intersection, quotient...).

Procedures:

D.4.14.1 isMonomial  checks whether an ideal id is monomial
D.4.14.2 minbaseMon  computes the minimal monomial generating set of a monomial ideal id
D.4.14.3 gcdMon  computes the gcd of two monomials f, g
D.4.14.4 lcmMon  computes the lcm of two monomials f, g
D.4.14.5 membershipMon  checks whether a polynomial f belongs to a monomial ideal id
D.4.14.6 intersectMon  intersection of monomial ideals id1 and id2
D.4.14.7 quotientMon  quotient ideal id1:id2
D.4.14.8 radicalMon  computes the radical of a monomial ideal id
D.4.14.9 isprimeMon  checks whether a monomial ideal id is prime
D.4.14.10 isprimaryMon  checks whether a monomial ideal id is primary
D.4.14.11 isirreducibleMon  checks whether a monomial ideal id is irreducible
D.4.14.12 isartinianMon  checks whether a monomial ideal id is artininan
D.4.14.13 isgenericMon  checks whether a monomial ideal id is generic
D.4.14.14 dimMon  dimension of a monomial ideal id
D.4.14.15 irreddecMon  computes the irreducible decomposition of a monomial ideal id
D.4.14.16 primdecMon  computes a minimal primary decomposition of a monomial ideal id


Top Back: modStd Forward: isMonomial FastBack: FastForward: Up: Singular Manual Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.