Top
Back: primary_char0_no_molien_random
Forward: primary_charp_without_random
FastBack:
FastForward:
Up: finvar_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.1.23 primary_charp_no_molien_random

Procedure from library finvar.lib (see finvar_lib).

Usage:
primary_charp_no_molien_random(REY,r[,v]);
REY: a <matrix> representing the Reynolds operator, r: an <int> where -|r| to |r| is the range of coefficients of the random combinations of bases elements, v: an optional <int>

Assume:
REY is the first return value of group_reynolds or reynolds_molien

Display:
information about the various stages of the programme if v does not equal 0

Return:
primary invariants (type <matrix>) of the invariant ring and an <intvec> listing some of the degrees where no non-trivial homogeneous invariants are to be found

Theory:
Bases of homogeneous invariants are generated successively and random linear combinations are chosen as primary invariants that lower the dimension of the ideal generated by the previously found invariants (see "Generating a Noetherian Normalization of the Invariant Ring of a Finite Group" by Decker, Heydtmann, Schreyer (1998)).

Example:
 
LIB "finvar.lib";
ring R=3,(x,y,z),dp;
matrix A[3][3]=0,1,0,-1,0,0,0,0,-1;
list L=group_reynolds(A);
list l=primary_charp_no_molien_random(L[1],1);
print(l[1]);
==> z2,x2+y2,x4+y4-z4


Top Back: primary_char0_no_molien_random Forward: primary_charp_without_random FastBack: FastForward: Up: finvar_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.