| LIB "brnoeth.lib";
int plevel=printlevel;
printlevel=-1;
ring s=2,(x,y),lp;
list HC=Adj_div(x3+y2+y);
==> The genus of the curve is 1
HC=NSplaces(1..2,HC);
HC=extcurve(2,HC);
==> Total number of rational places : NrRatPl = 9
def ER=HC[1][4];
setring ER;
intvec G=5; // the rational divisor G = 5*HC[3][1]
intvec D=2..9; // D = sum of the rational places no. 2..9 over F_4
// let us construct the corresponding evaluation AG code :
matrix C=AGcode_L(G,D,HC);
==> Vector basis successfully computed
// here is a linear code of type [8,5,>=3] over F_4
print(C);
==> 0,0,(a), (a+1),1, 1, (a+1),(a),
==> 0,1,(a), (a+1),(a),(a+1),(a), (a+1),
==> 1,1,1, 1, 1, 1, 1, 1,
==> 0,0,(a+1),(a), 1, 1, (a), (a+1),
==> 0,0,(a+1),(a), (a),(a+1),1, 1
printlevel=plevel;
|