Top
Back: qring (plural)
Forward: qring related functions (plural)
FastBack: poly (plural)
FastForward: resolution (plural)
Up: qring (plural)
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.2.5.1 qring declaration (plural)

Syntax:
qring name = ideal_expression ;
Default:
none
Purpose:
declares a quotient ring as the basering modulo an ideal_expression and sets it as current basering.
Note:
reports error if an ideal is not a two-sided Groebner basis.
Example:
 
ring r=0,(z,u,v,w),dp;
def R=nc_algebra(-1,0); // an anticommutative algebra
setring R;
option(redSB);
option(redTail);
ideal i=z^2,u^2,v^2,w^2, zuv-w;
qring Q = i;  // incorrect call produces error
==> // ** i is no standard basis
==> // ** i is no twosided standard basis
kill Q;
setring R;  // go back to the ring R
qring q=twostd(i); // now it is an exterior algebra modulo <zuv-w>
q;
==> //   characteristic : 0
==> //   number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    z u v w
==> //        block   2 : ordering C
==> //   noncommutative relations:
==> //    uz=-zu
==> //    vz=-zv
==> //    wz=-zw
==> //    vu=-uv
==> //    wu=-uw
==> //    wv=-vw
==> // quotient ring from ideal
==> _[1]=w2
==> _[2]=vw
==> _[3]=uw
==> _[4]=zw
==> _[5]=v2
==> _[6]=u2
==> _[7]=z2
==> _[8]=zuv-w
poly k = (v-u)*(zv+u-w);
k; // the output is not yet totally reduced
==> zuv-uv+uw-vw
poly ek=reduce(k,std(0));
ek; // the reduced form
==> -uv+w


Top Back: qring (plural) Forward: qring related functions (plural) FastBack: poly (plural) FastForward: resolution (plural) Up: qring (plural) Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.