Top
Back: Rings associated to monomial orderings
Forward: Parameters
FastBack: Examples
FastForward: Computing Groebner and Standard Bases
Up: Programming
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

A.1.4 Long coefficients

The following innocent example produces in its standard basis extremely long coefficients in char 0 for the lexicographical ordering. But a very small deformation does not (the undeformed example is degenerated with respect to the Newton boundary). This example demonstrates that it might be wise, for complicated examples, to do the calculation first in positive char (e.g., 32003). It has been shown, that in complicated examples, more than 95 percent of the time needed for a standard basis computation is used in the computation of the coefficients (in char 0). The representation of long integers with real is demonstrated.

 
timer = 1;                              // activate the timer
ring R0 = 0,(x,y),lp;
poly f = x5+y11+xy9+x3y9;
ideal i = jacob(f);
ideal i1 = i,i[1]*i[2];                 // undeformed ideal
ideal i2 = i,i[1]*i[2]+1/1000000*x5y8;  // deformation of i1
i1; i2;
==> i1[1]=5x4+3x2y9+y9
==> i1[2]=9x3y8+9xy8+11y10
==> i1[3]=45x7y8+27x5y17+45x5y8+55x4y10+36x3y17+33x2y19+9xy17+11y19
==> i2[1]=5x4+3x2y9+y9
==> i2[2]=9x3y8+9xy8+11y10
==> i2[3]=45x7y8+27x5y17+45000001/1000000x5y8+55x4y10+36x3y17+33x2y19+9xy17+1\
   1y19
ideal j = std(i1);
j;
==> j[1]=264627y39+26244y35-1323135y30-131220y26+1715175y21+164025y17+1830125\
   y16
==> j[2]=12103947791971846719838321886393392913750065060875xy8-28639152114168\
   3198701331939250003266767738632875y38-31954402206909026926764622877573565\
   78554430672591y37+57436621420822663849721381265738895282846320y36+1657764\
   214948799497573918210031067353932439400y35+213018481589308191195677223898\
   98682697001205500y34+1822194158663066565585991976961565719648069806148y33\
   -4701709279892816135156972313196394005220175y32-1351872269688192267600786\
   97600850686824231975y31-3873063305929810816961516976025038053001141375y30\
   +1325886675843874047990382005421144061861290080000y29+1597720195476063141\
   9467945895542406089526966887310y28-26270181336309092660633348002625330426\
   7126525y27-7586082690893335269027136248944859544727953125y26-867853074106\
   49464602285843351672148965395945625y25-5545808143273594102173252331151835\
   700278863924745y24+19075563013460437364679153779038394895638325y23+548562\
   322715501761058348996776922561074021125y22+157465452677648386073957464715\
   68100780933983125y21-1414279129721176222978654235817359505555191156250y20\
   -20711190069445893615213399650035715378169943423125y19+272942733337472665\
   573418092977905322984009750y18+789065115845334505801847294677413365720955\
   3750y17+63554897038491686787729656061044724651089803125y16-22099251729923\
   906699732244761028266074350255961625y14+147937139679655904353579489722585\
   91339027857296625y10
==> j[3]=5x4+3x2y9+y9
// Compute average coefficient length (=51) by
//   - converting j[2] to a string in order to compute the number
//   of characters
//   - divide this by the number of monomials:
size(string(j[2])) div size(j[2]);
==> 51
vdim(j);
==> 63
// For a better representation normalize the long coefficients
// of the polynomial j[2] and map it to real:
poly p=(1/12103947791971846719838321886393392913750065060875)*j[2];
ring R1=real,(x,y),lp;
short=0; // force the long output format
poly p=imap(R0,p);
p;
==> x*y^8-(2.366e-02)*y^38-(2.640e-01)*y^37+(4.745e-06)*y^36+(1.370e-04)*y^35\
   +(1.760e-03)*y^34+(1.505e-01)*y^33-(3.884e-07)*y^32-(1.117e-05)*y^31-(3.2\
   00e-04)*y^30+(1.095e-01)*y^29+(1.320e+00)*y^28-(2.170e-05)*y^27-(6.267e-0\
   4)*y^26-(7.170e-03)*y^25-(4.582e-01)*y^24+(1.576e-06)*y^23+(4.532e-05)*y^\
   22+(1.301e-03)*y^21-(1.168e-01)*y^20-(1.711e+00)*y^19+(2.255e-05)*y^18+(6\
   .519e-04)*y^17+(5.251e-03)*y^16-(1.826e+00)*y^14+(1.222e+00)*y^10
// Compute a standard basis for the deformed ideal:
setring R0; // return to the original ring R0
j = std(i2);
j;
==> j[1]=y16
==> j[2]=65610xy8+17393508y27+7223337y23+545292y19+6442040y18-119790y14+80190\
   y10
==> j[3]=5x4+3x2y9+y9
vdim(j);
==> 40


Top Back: Rings associated to monomial orderings Forward: Parameters FastBack: Examples FastForward: Computing Groebner and Standard Bases Up: Programming Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.