|
B.2.4 Local orderings
For ls, ds, Ds and, if the weights are positive integers, also for ws and
Ws, we have
Loc = , the localization of
at the maximal ideal
.
- ls:
- negative lexicographical ordering:
. - ds:
- negative degree reverse lexicographical ordering:
let
then
or
and
![$\exists\ 1 \le i \le n: \alpha_n = \beta_n,
\ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$](sing_455.png) - Ds:
- negative degree lexicographical ordering:
let
then
or
and
![$\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
\ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$](sing_456.png) - ws:
- (general) weighted reverse lexicographical ordering:
a nonzero integer,
any integer (including 0),
is defined as ds
but with
![$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$](sing_459.png) - Ws:
- (general) weighted lexicographical ordering:
a nonzero integer,
any integer (including 0),
is defined as Ds
but with
![$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$](sing_459.png)
|