Top
Back: is_NP
Forward: nfmodstd_lib
FastBack:
FastForward:
Up: mregular_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.21.7 is_nested

Procedure from library mregular.lib (see mregular_lib).

Usage:
is_nested (i); i monomial ideal

Return:
1 if i is of nested type, 0 otherwise.
(returns -1 if i=(0) or i=(1)).

Assume:
i is a nonzero proper monomial ideal.

Notes:
1. The ideal must be monomial, otherwise the result has no meaning (so check this before using this procedure).
2. is_nested is used in procedures depthIdeal, regIdeal and satiety.
3. When i is a monomial ideal of nested type of S=K[x(0)..x(n)], the a-invariant of S/i coincides with the upper bound obtained using the procedure regIdeal with printlevel > 0.

Theory:
A monomial ideal is of nested type if its associated primes are all of the form (x(0),...,x(i)) for some i<=n.
(see definition and effective criterion to check this property in the preprint 'Saturation and Castelnuovo-Mumford regularity' by Bermejo-Gimenez, 2004).

Example:
 
LIB "mregular.lib";
ring s=0,(x,y,z,t),dp;
ideal i1=x2,y3; ideal i2=x3,y2,z2; ideal i3=x3,y2,t2;
ideal i=intersect(i1,i2,i3);
is_nested(i);
==> 0
ideal ch=x,y,z,z+t;
map phi=ch;
ideal I=lead(std(phi(i)));
is_nested(I);
==> 1

Top Back: is_NP Forward: nfmodstd_lib FastBack: FastForward: Up: mregular_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.