Top
Back: symmetricPowerSheaf
Forward: addSheaf
FastBack:
FastForward:
Up: schubert_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.5.17.19 quotSheaf

Procedure from library schubert.lib (see schubert_lib).

Usage:
quotSheaf(A,B); A sheaf, B sheaf

Return:
sheaf

Theory:
This is the quotient of two sheaves

Example:
 
LIB "schubert.lib";
variety G = Grassmannian(3,5);
def r = G.baseRing;
setring r;
sheaf S = makeSheaf(G,subBundle);
sheaf B = dualSheaf(S)^2;
sheaf B3 = dualSheaf(S)^3;
sheaf B5 = dualSheaf(S)^5;
variety PB = projectiveBundle(B);
def R = PB.baseRing;
setring R;
sheaf Q = makeSheaf(PB,QuotientBundle);
sheaf V = dualSheaf(Q)*B3;
sheaf A = B5 - V;
A;
==> A sheaf of rank  11
==> 
See also: addSheaf; dualSheaf; symmetricPowerSheaf; tensorSheaf.


Top Back: symmetricPowerSheaf Forward: addSheaf FastBack: FastForward: Up: schubert_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.