Top
Back: linesHypersurface
Forward: sumofquotients
FastBack:
FastForward:
Up: schubert_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.5.17.31 rationalCurve

Procedure from library schubert.lib (see schubert_lib).

Usage:
rationalCurve(d,#); d int, # list

Return:
number

Theory:
This is the Gromov-Witten invariant corresponding the number of rational curves on a general Calabi-Yau threefold.

Example:
 
LIB "schubert.lib";
ring r = 0,x,dp;
rationalCurve(1);
==> 2875
/*
rationalCurve(2);
rationalCurve(3);
rationalCurve(4);
rationalCurve(1,list(4,2));
rationalCurve(1,list(3,3));
rationalCurve(1,list(3,2,2));
rationalCurve(1,list(2,2,2,2));
rationalCurve(2,list(4,2));
rationalCurve(2,list(3,3));
rationalCurve(2,list(3,2,2));
rationalCurve(2,list(2,2,2,2));
rationalCurve(3,list(4,2));
rationalCurve(3,list(3,3));
rationalCurve(3,list(3,2,2));
rationalCurve(3,list(2,2,2,2));
rationalCurve(4,list(4,2));
rationalCurve(4,list(3,3));
rationalCurve(4,list(3,2,2));
rationalCurve(4,list(2,2,2,2));
*/
See also: linesHypersurface; multipleCover.


Top Back: linesHypersurface Forward: sumofquotients FastBack: FastForward: Up: schubert_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.