Top
Back: complexType
Forward: sagbiAlg
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.6.6 classify_aeq_lib

Library:
classifyAeq.lib
Purpose:
Simple Space Curve singularities in characteristic 0

Authors:
Faira Kanwal Janjua fairakanwaljanjua@gmail.com
Gerhard Pfister pfister@mathematik.uni-kl.de Khawar Mehmood khawar1073@gmail.com

Overview:
A library for classifying the simple singularities
with respect to A equivalence in characteristic 0.
Simple Surface singularities in characteristic O have been classified by Bruce and Gaffney [4] resp. Gibson and Hobbs [1] with respect to A equivalence. If the input is one of the simple singularities in [1] it returns a normal form otherwise a zero ideal(i.e not simple).

References:
[1] Gibson,C.G; Hobbs,C.A.:Simple SIngularities of Space Curves. Math.Proc. Comb.Phil.Soc.(1993),113,297.
[2] Hefez,A;Hernandes,M.E.:Standard bases for local rings of branches and their modules of differentials. Journal of Symbolic Computation 42(2007) 178-191. [3] Hefez,A;Hernandes,M.E.:The Analytic Classification Of Plane Branches. Bull.Lond Math Soc.43.(2011) 2,289-298. [4] Bruce, J.W.,Gaffney, T.J.: Simple singularities of mappings (C, 0) ->(C2,0). J. London Math. Soc. (2) 26 (1982), 465-474.
[5] Ishikawa,G; Janeczko,S.: The Complex Symplectic Moduli Spaces of Unimodal Parametric Plane Curve Singularities. Insitute of Mathematics of the Polish Academy of Sciences,Preprint 664(2006)

Procedures:

D.6.6.1 sagbiAlg  Compute the Sagbi-basis of the Algebra.
D.6.6.2 sagbiMod  Compute the Sagbi- basis of the Module.
D.6.6.3 semiGroup  Compute the Semi-Group of the Algebra provided the input is Sagbi Bases of the Algebra.
D.6.6.4 semiMod  Compute the Semi-Module provided that the input are the Sagbi Bases of the Algebra resp.Module.
D.6.6.5 planeCur  Compute the type of the Simple Plane Curve singularity.
D.6.6.6 spaceCur  Compute the type of the simple Space Curve singularity.
D.6.6.7 HHnormalForm  computes for the parametrization defined by I normal form, semi group, semi module of differentials, Zariski number and moduli
D.6.6.8 modSagbiAlg  modular variant of sagbiAlg
D.6.6.9 classSpaceCurve  normal form of I if I is simple


Top Back: complexType Forward: sagbiAlg FastBack: FastForward: Up: Singular Manual Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.