Top
Back: relweight
Forward: KSpencerKernel
FastBack:
FastForward:
Up: spcurve_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.6.21.8 posweight

Procedure from library spcurve.lib (see spcurve_lib).

Usage:
posweight(M,t1,n[,s]); M matrix, t1 module, n int, s string
n=0 : all deformations of non-negative weight
n=1 : only non-constant deformations of non-negative weight
n=2 : all deformations of positive weight

Assume:
M is a presentation matrix of a Cohen-Macaulay codimension 2 ideal and t1 is its T1 space in matrix notation

Return:
new ring containing a list posw, consisting of a presentation matrix describing the deformation given by the generators of T1 of non-negative/positive weight and the weight vector for the new variables

Note:
The current basering should not contain any variables named T(i) where i is some integer!

Example:
 
LIB "spcurve.lib";
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=(x(3)-x(1)^2)*x(3),(x(3)-x(1)^2)*x(2),x(2)^2-x(1)^7*x(3);
matrix M=isCMcod2(curve);
list l=matrixT1(M,3);
def rneu=posweight(l[1],std(l[2]),0);
setring rneu;
pmat(posw[1]);
==> T(2)+x(1)*T(1), -x(3)+x(1)^2, 
==> -x(3),          x(2),         
==> x(2),           -x(1)^7
posw[2];
==> 3,1


Top Back: relweight Forward: KSpencerKernel FastBack: FastForward: Up: spcurve_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.