Top
Back: secondary_and_irreducibles_no_molien
Forward: orbit_variety
FastBack:
FastForward:
Up: finvar_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.1.32 secondary_not_cohen_macaulay

Procedure from library finvar.lib (see finvar_lib).

Usage:
secondary_not_cohen_macaulay(P,G1,G2,...[,v]);
P: a 1xn <matrix> with primary invariants, G1,G2,...: nxn <matrices> generating a finite matrix group, v: optional <int>

Assume:
n is the number of variables of the basering

Return:
secondary invariants of the invariant ring (type <matrix>)

Display:
information on the progress of computation if v does not equal 0

Theory:
Secondary invariants are generated following "Generating Invariant Rings of Finite Groups over Arbitrary Fields" by Kemper (1996).

Example:
 
LIB "finvar.lib";
ring R=2,(x,y,z),dp;
matrix A[3][3]=0,1,0,-1,0,0,0,0,-1;
list L=primary_invariants(A);
matrix S=secondary_not_cohen_macaulay(L[1],A);
print(S);
==> 1


Top Back: secondary_and_irreducibles_no_molien Forward: orbit_variety FastBack: FastForward: Up: finvar_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.