Top
Back: reiffen
Forward: convloc
FastBack:
FastForward:
Up: dmod_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document
7.5.4.0. isHolonomic
Procedure from library dmod.lib (see dmod_lib).

Usage:
isHolonomic(M); M an ideal/module/matrix

Return:
int, 1 if M is holonomic over the base ring, and 0 otherwise

Assume:
basering is a Weyl algebra in characteristic 0

Purpose:
check whether M is holonomic over the base ring

Note:
M is holonomic if 2*dim(M) = dim(R), where R is the
base ring; dim stands for Gelfand-Kirillov dimension

Example:
 
LIB "dmod.lib";
ring R = 0,(x,y),dp;
poly F = x*y*(x+y);
def A = annfsBM(F,0);
setring A;
LD;
==> LD[1]=x*Dx+y*Dy+3
==> LD[2]=x*y*Dy+y^2*Dy+x+2*y
==> LD[3]=y^2*Dx*Dy-y^2*Dy^2+2*y*Dx-4*y*Dy-2
isHolonomic(LD);
==> 1
ideal I = std(LD[1]);
I;
==> I[1]=x*Dx+y*Dy+3
isHolonomic(I);
==> 0


Top Back: reiffen Forward: convloc FastBack: FastForward: Up: dmod_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.