Top
Back: reduce (letterplace)
Forward: std (letterplace)
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.8.10 rightstd (letterplace)

Syntax:
rightstd( ideal_expression); rightstd( module_expression);
Type:
ideal or module
Purpose:
Compute a right Groebner basis of the set of generators of the input ideal/module.
Note:
It is also effective in factor rings.
Example:
 
LIB "freegb.lib";
ring r = 0,(x,z),dp;
ring R = freeAlgebra(r,7);
ideal I = z, x*z, x*x*z;
rightstd(I); // a right GB of I in K<x,z>
==> _[1]=z
==> _[2]=x*z
==> _[3]=x*x*z
qring Q = twostd(x*z); // now we change to the factor algebra modulo x*z
ideal I = imap(R,I);
rightstd(I); // a right GB in a factor algebra
==> _[1]=z
reduce(I,twostd(0)); // an explanation for the latter
==> _[1]=z
==> _[2]=0
==> _[3]=0


Top Back: reduce (letterplace) Forward: std (letterplace) FastBack: FastForward: Up: Singular Manual Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.