Top
Back: teach_lpKDim
Forward: lpHilbert
FastBack:
FastForward:
Up: fpadim_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.10.1.4 lpMonomialBasis

Procedure from library fpadim.lib (see fpadim_lib).

Usage:
lpMonomialBasis(d, donly, J); d, donly integers, J an ideal

Return:
ideal

Purpose:
computes a list of free monomials in a Letterplace
basering R of degree at most d and not contained in <LM(J)>
if donly <> 0, only monomials of degree d are returned

Assume:
- basering is a Letterplace ring.
- d <= attrib(basering,uptodeg) holds.
- J is a Groebner basis

Note:
will be replaced with reduce(maxideal(d), J); soon

Example:
 
LIB "fpadim.lib";
ring r = 0,(x,y),dp;
def R = freeAlgebra(r, 7); setring R;
ideal J = x*y*x - y*x*y;
option(redSB); option(redTail);
J = letplaceGBasis(J);
J;
==> J[1]=x*y*x-y*x*y
==> J[2]=y*x*y*y*x-x*y*y*x*y
==> J[3]=y*x*y*y*y*x-x*x*y*y*x*y
==> J[4]=y*x*y*y*y*y*x-x*x*x*y*y*x*y
//monomials of degree 2 only in K<x,y>:
lpMonomialBasis(2,1,ideal(0));
==> _[1]=x*x
==> _[2]=y*x
==> _[3]=x*y
==> _[4]=y*y
//monomials of degree <=2 in K<x,y>
lpMonomialBasis(2,0,ideal(0));
==> _[1]=1
==> _[2]=x
==> _[3]=y
==> _[4]=x*x
==> _[5]=y*x
==> _[6]=x*y
==> _[7]=y*y
//monomials of degree 3 only in K<x,y>/J
lpMonomialBasis(3,1,J);
==> _[1]=x*x*x
==> _[2]=y*x*x
==> _[3]=y*y*x
==> _[4]=x*x*y
==> _[5]=y*x*y
==> _[6]=x*y*y
==> _[7]=y*y*y
//monomials of degree <=3 in K<x,y>/J
lpMonomialBasis(3,0,J);
==> _[1]=1
==> _[2]=x
==> _[3]=y
==> _[4]=x*x
==> _[5]=y*x
==> _[6]=x*y
==> _[7]=y*y
==> _[8]=x*x*x
==> _[9]=y*x*x
==> _[10]=y*y*x
==> _[11]=x*x*y
==> _[12]=y*x*y
==> _[13]=x*y*y
==> _[14]=y*y*y


Top Back: teach_lpKDim Forward: lpHilbert FastBack: FastForward: Up: fpadim_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.