Top
Back: crystallographicGroupP6
Forward: dyckGroup1
FastBack:
FastForward:
Up: fpalgebras_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.10.2.22 crystallographicGroupP6MM

Procedure from library fpalgebras.lib (see fpalgebras_lib).

Usage:
crystallographicGroupP6MM(d); d an integer

Return:
ring

Note:
- the ring contains the ideal I, which contains the required relations - p6mm group with the following presentation
< x, y, r, m | [x, y] = r^6 = m^2 = 1, r^(-1)*y*r = x^(-1)*y, r^(-1)*x*r = y, m^(-1)*x*m = x^(-1), m^(-1)*y*m = x^(-1)*y, m^(-1)*r*m = r^(-1)*y> - d gives the degreebound for the Letterplace ring

Example:
 
LIB "fpalgebras.lib";
def R = crystallographicGroupP6MM(7); setring R;
I;
==> I[1]=y*x+x*y+1
==> I[2]=r*r*r*r*r*r+y*x+x*y
==> I[3]=r*r*r*r*r*r+1
==> I[4]=y*x+x*y+m*m
==> I[5]=r*r*r*r*r*r+m*m
==> I[6]=m*m+1
==> I[7]=m*x*m+X
==> I[8]=m*y*m+X*y
==> I[9]=r*r*r*r*r*x*r+y
==> I[10]=r*r*r*r*r*y*r+X*y
==> I[11]=r*r*r*r*r*y+m*r*m
==> I[12]=X*x+1
==> I[13]=x*X+1
==> I[14]=Y*y+1
==> I[15]=y*Y+1


Top Back: crystallographicGroupP6 Forward: dyckGroup1 FastBack: FastForward: Up: fpalgebras_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.1, 2022, generated by texi2html.