Top
Back: semaphore
Forward: changechar
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.12 ring_lib

Library:
ring.lib
Purpose:
Manipulating Rings and Maps
Authors:
Singular team

Procedures:

D.2.12.1 changechar  make a copy of basering [ring r] with new char c
D.2.12.2 changeord  make a copy of basering [ring r] with new ord o
D.2.12.3 changevar  make a copy of basering [ring r] with new vars v
D.2.12.4 defring  define a ring R in specified char c, n vars v, ord o
D.2.12.5 defrings  define ring Sn in n vars, char 32003 [p], ord ds
D.2.12.6 defringp  define ring Pn in n vars, char 32003 [p], ord dp
D.2.12.7 extendring  extend given ring by n vars v, ord o and name it R
D.2.12.8 fetchall  fetch all objects of ring R to basering
D.2.12.9 imapall  imap all objects of ring R to basering
D.2.12.10 mapall  map all objects of ring R via ideal i to basering
D.2.12.11 ord_test  test whether ordering of R is global, local or mixed
D.2.12.12 ringtensor  create ring, tensor product of rings s,t,...
D.2.12.13 ringweights  intvec of weights of ring variables of ring r
D.2.12.14 preimageLoc  computes preimage for non-global orderings
D.2.12.15 rootofUnity  the minimal polynomial for the n-th primitive root of unity (parameters in square brackets [] are optional)
D.2.12.16 optionIsSet  check if as a string given option is set or not. hasFieldCoefficient check if the coefficient ring is considered a field hasGFCoefficient check if the coefficient ring is GF(p,k) hasZpCoefficient check if the coefficient ring is ZZ/p hasZp_aCoefficient check if the coefficient ring is an elag. ext. of ZZ/p hasQQCoefficient check if the coefficient ring is QQ
D.2.12.17 hasNumericCoeffs  check for use of floating point numbers
D.2.12.18 hasCommutativeVars  non-commutative or commutative polynomial ring
D.2.12.19 hasGlobalOrdering  global versus mixed/local monomial ordering
D.2.12.20 hasMixedOrdering  mixed versus global/local ordering
D.2.12.21 hasAlgExtensionCoefficient  coefficients are an algebraic extension
D.2.12.22 hasTransExtensionCoefficient  coefficients are rational functions
D.2.12.23 isQuotientRing  ring is a qotient ring
D.2.12.24 isSubModule  check if I is in J as submodule
D.2.12.25 changeordTo  change the ordering of a ring to a simple one
D.2.12.26 addvarsTo  add variables to a ring
D.2.12.27 addNvarsTo  add N variables to a ring


Top Back: semaphore Forward: changechar FastBack: FastForward: Up: Singular Manual Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.2, 2023, generated by texi2html.