| LIB "rootsmr.lib";
ring r = 0,(x,y,z),lp;
ideal I = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
nrRootsDeterm(I); //no of real roots (using internally std)
==> 6
I = groebner(I); //using the hilbert driven GB computation
int pr = printlevel;
printlevel = 2;
nrRootsDeterm(I);
==> //ideal has 8 complex solutions, counted with multiplicity
==> 6
printlevel = pr;
|