Top
Back: autgradalg_lib
Forward: autGradAlg
FastBack:
FastForward:
Up: autgradalg_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.1.1 autKS

Procedure from library autgradalg.lib (see autgradalg_lib).

Usage:
autKS(TOR); TOR: optional list of elementary divisors in case of torsion.

Assume:
the basering is multigraded having used the command setBaseMultigrading(Q) from 'multigrading.lib'.

Purpose:
Compute the subgroup Aut_K(S) of GL(n) of graded automorphisms of the polynomial ring S (the basering).

Return:
returns a ring S and exports an ideal ideal Iexported in the coordinate ring S = K[Y_ij] of GL(n) such that Aut_K(S) = V(I).

Example:
 
LIB "autgradalg.lib";
//////////////////
// example: fano 15:
intmat Q[1][5] = 3,3,2,2,1;
ring R = 0,T(1..5),dp;
// attach degree matrix Q to R:
setBaseMultigrading(Q);
//ideal I = T(1)*T(2) + T(3)^2*T(4) + T(5)^6;
def S = autKS();
==> // coefficients: QQ
==> // number of vars : 50
==> //        block   1 : ordering dp
==> //                  : names    T(1) T(2) T(3) T(4) T(5) Y(1) Y(2) Y(3) Y(\
   4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) Y(15) Y(16) Y(1\
   7) Y(18) Y(19) Y(20) Y(21) Y(22) Y(23) Y(24) Y(25) Y(26) Y(27) Y(28) Y(29\
   ) Y(30) Y(31) Y(32) Y(33) Y(34) Y(35) Y(36) Y(37) Y(38) Y(39) Y(40) Y(41)\
    Y(42) Y(43) Y(44) Y(45)
==> //        block   2 : ordering C
setring S;
dim(std(Iexported));
==> 17
basering;
==> // coefficients: QQ
==> // number of vars : 46
==> //        block   1 : ordering dp
==> //                  : names    Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(\
   9) Y(10) Y(11) Y(12) Y(13) Y(14) Y(15) Y(16) Y(17) Y(18) Y(19) Y(20) Y(21\
   ) Y(22) Y(23) Y(24) Y(25) Y(26) Y(27) Y(28) Y(29) Y(30) Y(31) Y(32) Y(33)\
    Y(34) Y(35) Y(36) Y(37) Y(38) Y(39) Y(40) Y(41) Y(42) Y(43) Y(44) Y(45)
==> //        block   2 : ordering dp
==> //                  : names    Z
==> //        block   3 : ordering C
autKSexported;
==> [1]:
==>    [1]:
==>       _[1,1]=Y(1)
==>       _[1,2]=Y(2)
==>       _[1,3]=0
==>       _[1,4]=0
==>       _[1,5]=0
==>       _[1,6]=Y(6)
==>       _[1,7]=Y(7)
==>       _[1,8]=0
==>       _[1,9]=Y(9)
==>       _[2,1]=Y(10)
==>       _[2,2]=Y(11)
==>       _[2,3]=0
==>       _[2,4]=0
==>       _[2,5]=0
==>       _[2,6]=Y(15)
==>       _[2,7]=Y(16)
==>       _[2,8]=0
==>       _[2,9]=Y(18)
==>       _[3,1]=0
==>       _[3,2]=0
==>       _[3,3]=Y(21)
==>       _[3,4]=Y(22)
==>       _[3,5]=0
==>       _[3,6]=0
==>       _[3,7]=0
==>       _[3,8]=Y(26)
==>       _[3,9]=0
==>       _[4,1]=0
==>       _[4,2]=0
==>       _[4,3]=Y(30)
==>       _[4,4]=Y(31)
==>       _[4,5]=0
==>       _[4,6]=0
==>       _[4,7]=0
==>       _[4,8]=Y(35)
==>       _[4,9]=0
==>       _[5,1]=0
==>       _[5,2]=0
==>       _[5,3]=0
==>       _[5,4]=0
==>       _[5,5]=Y(41)
==>       _[5,6]=0
==>       _[5,7]=0
==>       _[5,8]=0
==>       _[5,9]=0
==>       _[6,1]=0
==>       _[6,2]=0
==>       _[6,3]=0
==>       _[6,4]=0
==>       _[6,5]=0
==>       _[6,6]=Y(21)*Y(41)
==>       _[6,7]=Y(22)*Y(41)
==>       _[6,8]=0
==>       _[6,9]=Y(26)*Y(41)
==>       _[7,1]=0
==>       _[7,2]=0
==>       _[7,3]=0
==>       _[7,4]=0
==>       _[7,5]=0
==>       _[7,6]=Y(30)*Y(41)
==>       _[7,7]=Y(31)*Y(41)
==>       _[7,8]=0
==>       _[7,9]=Y(35)*Y(41)
==>       _[8,1]=0
==>       _[8,2]=0
==>       _[8,3]=0
==>       _[8,4]=0
==>       _[8,5]=0
==>       _[8,6]=0
==>       _[8,7]=0
==>       _[8,8]=Y(41)^2
==>       _[8,9]=0
==>       _[9,1]=0
==>       _[9,2]=0
==>       _[9,3]=0
==>       _[9,4]=0
==>       _[9,5]=0
==>       _[9,6]=0
==>       _[9,7]=0
==>       _[9,8]=0
==>       _[9,9]=Y(41)^3
==>    [2]:
==>       1
==>    [3]:
==>       _[1]=Y(3)
==>       _[2]=Y(4)
==>       _[3]=Y(5)
==>       _[4]=Y(8)
==>       _[5]=Y(12)
==>       _[6]=Y(13)
==>       _[7]=Y(14)
==>       _[8]=Y(17)
==>       _[9]=Y(19)
==>       _[10]=Y(20)
==>       _[11]=Y(23)
==>       _[12]=Y(24)
==>       _[13]=Y(25)
==>       _[14]=Y(27)
==>       _[15]=Y(28)
==>       _[16]=Y(29)
==>       _[17]=Y(32)
==>       _[18]=Y(33)
==>       _[19]=Y(34)
==>       _[20]=Y(36)
==>       _[21]=Y(37)
==>       _[22]=Y(38)
==>       _[23]=Y(39)
==>       _[24]=Y(40)
==>       _[25]=Y(42)
==>       _[26]=Y(43)
==>       _[27]=Y(44)
==>       _[28]=Y(45)
==>       _[29]=-Y(2)*Y(10)*Y(22)^2*Y(30)^2*Y(41)^8*Z+Y(1)*Y(11)*Y(22)^2*Y(30\
   )^2*Y(41)^8*Z+2*Y(2)*Y(10)*Y(21)*Y(22)*Y(30)*Y(31)*Y(41)^8*Z-2*Y(1)*Y(11)\
   *Y(21)*Y(22)*Y(30)*Y(31)*Y(41)^8*Z-Y(2)*Y(10)*Y(21)^2*Y(31)^2*Y(41)^8*Z+Y\
   (1)*Y(11)*Y(21)^2*Y(31)^2*Y(41)^8*Z-1
==>    [4]:
==>       T(1),T(2),T(3),T(4),T(5),T(3)*T(5),T(4)*T(5),T(5)^2,T(5)^3
getVariableWeights();
==> 3,3,2,2,1,3,3,2,3,3,3,2,2,1,3,3,2,3,3,3,2,2,1,3,3,2,3,3,3,2,2,1,3,3,2,3,3\
   ,3,2,2,1,3,3,2,3,-22 
kill S, Q, R;
/////////////
// example 3.14 from the paper
intmat Q[3][5] =
1,1,1,1,1,
1,-1,0,0,1,
1,1,1,0,0;
list TOR = 2;
ring R = 0,T(1..5),dp;
// attach degree matrix Q to R:
setBaseMultigrading(Q);
//ideal I = T(1)*T(2) + T(3)^2 + T(4)^2;
def S = autKS();
==> // coefficients: QQ
==> // number of vars : 30
==> //        block   1 : ordering dp
==> //                  : names    T(1) T(2) T(3) T(4) T(5) Y(1) Y(2) Y(3) Y(\
   4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) Y(11) Y(12) Y(13) Y(14) Y(15) Y(16) Y(1\
   7) Y(18) Y(19) Y(20) Y(21) Y(22) Y(23) Y(24) Y(25)
==> //        block   2 : ordering C
==> // ** redefining adMons (  list adMons;) autgradalg.lib::autKS:2325
==> // ** redefining MONexported (  export(MONexported);)
setring S;
Iexported;
==> Iexported[1]=Y(23)
==> Iexported[2]=Y(22)
==> Iexported[3]=Y(21)
==> Iexported[4]=Y(18)
==> Iexported[5]=Y(17)
==> Iexported[6]=Y(16)
==> Iexported[7]=Y(15)
==> Iexported[8]=Y(14)
==> Iexported[9]=Y(12)
==> Iexported[10]=Y(11)
==> Iexported[11]=Y(10)
==> Iexported[12]=Y(9)
==> Iexported[13]=Y(8)
==> Iexported[14]=Y(5)
==> Iexported[15]=Y(4)
==> Iexported[16]=Y(3)
==> Iexported[17]=Y(24)*Y(25)
==> Iexported[18]=Y(20)*Y(25)
==> Iexported[19]=Y(6)*Y(25)
==> Iexported[20]=Y(2)*Y(25)
==> Iexported[21]=Y(19)*Y(24)
==> Iexported[22]=Y(7)*Y(24)
==> Iexported[23]=Y(1)*Y(24)
==> Iexported[24]=Y(19)*Y(20)
==> Iexported[25]=Y(7)*Y(20)
==> Iexported[26]=Y(1)*Y(20)
==> Iexported[27]=Y(6)*Y(19)
==> Iexported[28]=Y(2)*Y(19)
==> Iexported[29]=Y(6)*Y(7)
==> Iexported[30]=Y(2)*Y(7)
==> Iexported[31]=Y(1)*Y(6)
==> Iexported[32]=Y(1)*Y(2)
==> Iexported[33]=Y(2)*Y(6)*Y(13)*Y(20)*Y(24)*Z+Y(1)*Y(7)*Y(13)*Y(19)*Y(25)*Z\
   -1
==> Iexported[34]=Y(1)*Y(7)*Y(13)*Y(19)*Y(25)^2*Z-Y(25)
==> Iexported[35]=Y(1)*Y(7)*Y(13)*Y(19)^2*Y(25)*Z-Y(19)
==> Iexported[36]=Y(1)*Y(7)^2*Y(13)*Y(19)*Y(25)*Z-Y(7)
==> Iexported[37]=Y(1)^2*Y(7)*Y(13)*Y(19)*Y(25)*Z-Y(1)
print(getVariableWeights());
==>      1     1     1     1     1     1     1     1     1     1     1     1 \
       1     1     1     1     1     1     1     1     1     1     1     1  \
      1    -5
==>      1    -1     0     0     1     1    -1     0     0     1     1    -1 \
       0     0     1     1    -1     0     0     1     1    -1     0     0  \
      1    -1
==>      1     1     1     0     0     1     1     1     0     0     1     1 \
       1     0     0     1     1     1     0     0     1     1     1     0  \
      0    -3
kill S, R, Q;


Top Back: autgradalg_lib Forward: autGradAlg FastBack: FastForward: Up: autgradalg_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.2, 2023, generated by texi2html.