Top
Back: lpDivision
Forward: isOrderingShiftInvariant
FastBack:
FastForward:
Up: freegb_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.10.4.6 lpGBPres2Poly

Procedure from library freegb.lib (see freegb_lib).

Usage:
lpGBPres2Poly(p,G); poly p, ideal G

Assume:
L is a valid Groebner presentation like the result of lpDivision

Return:
poly

Note:
assembles p = \sum_(i,j) l_(ij) g_i r_(ij) + NF(p,I) = \sum_(i) L[2][i][2] I[L[2][i][1]] L[2][i][3] + L[1]

Example:
 
LIB "freegb.lib";
ring r = 0,(x,y),dp;
ring R = freeAlgebra(r, 4); 
ideal I = x*x + y*y - 1; // 2D sphere
ideal J = twostd(I); // compute a two-sided Groebner basis
J; // it is finite and nice
==> J[1]=x*x+y*y-1
==> J[2]=y*y*x-x*y*y
poly h = x*x*y-y*x*x+x*y;
list L = lpDivision(h,J); 
L[1]; // what means that the normal form (or the remainder) of h wrt J is x*y
==> x*y
lpGBPres2Poly(L,J); // we see, that it is equal to h from above
==> -y*x*x+x*x*y+x*y


Top Back: lpDivision Forward: isOrderingShiftInvariant FastBack: FastForward: Up: freegb_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.2, 2023, generated by texi2html.