|
C.9 References
The Centre for Computer Algebra Kaiserslautern publishes a series of preprints
which are electronically available at
https://www.singular.uni-kl.de/reports .
Other sources to check are http://symbolicnet.org/ ,
http://www-sop.inria.fr/galaad/ ,... and the following list of books.
For references on non-commutative algebras and algorithms, see References (plural).
Text books on computational algebraic geometry
-
Adams, W.; Loustaunau, P.: An Introduction to Gröbner Bases. Providence, RI,
AMS, 1996
-
Becker, T.; Weisspfenning, V.:
Gröbner Bases - A Computational Approach to Commutative Algebra. Springer, 1993
-
Cohen, H.:
A Course in Computational Algebraic Number Theory,
Springer, 1995
-
Cox, D.; Little, J.; O'Shea, D.:
Ideals, Varieties and Algorithms. Springer, 1996
-
Cox, D.; Little, J.; O'Shea, D.:
Using Algebraic Geometry. Springer, 1998
-
Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.
Springer, 1995
-
Greuel, G.-M.; Pfister, G.:
A Singular Introduction to Commutative Algebra. Springer, 2002
-
Mishra, B.: Algorithmic Algebra, Texts and Monographs in Computer Science.
Springer, 1993
-
Sturmfels, B.: Algorithms in Invariant Theory. Springer 1993
-
Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic
Geometry. Springer, 1998
Descriptions of algorithms
-
Bareiss, E.:
Sylvester's identity and multistep integer-preserving Gaussian elimination.
Math. Comp. 22 (1968), 565-578
-
Campillo, A.: Algebroid curves in positive characteristic. SLN 813, 1980
-
Chou, S.:
Mechanical Geometry Theorem Proving.
D.Reidel Publishing Company, 1988
-
Decker, W.; Greuel, G.-M.; Pfister, G.:
Primary decomposition: algorithms and
comparisons. Preprint, Univ. Kaiserslautern, 1998.
To appear in: Greuel, G.-M.; Matzat, B. H.; Hiss, G. (Eds.),
Algorithmic Algebra and Number Theory. Springer Verlag, Heidelberg, 1998
-
Decker, W.; Greuel, G.-M.; de Jong, T.; Pfister, G.:
The normalisation: a new algorithm,
implementation and comparisons. Preprint, Univ. Kaiserslautern, 1998
-
Decker, W.; Heydtmann, A.; Schreyer, F. O.: Generating a Noetherian Normalization of
the Invariant Ring of a Finite Group, 1997, to appear in Journal of
Symbolic Computation
-
Faugère,J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation
of zero-dimensional
Gröbner bases by change of ordering. Journal of Symbolic Computation, 1989
-
Gräbe, H.-G.: On factorized Gröbner bases, Univ. Leipzig, Inst. für
Informatik, 1994
-
Grassmann, H.; Greuel, G.-M.; Martin, B.; Neumann,
W.; Pfister, G.; Pohl, W.; Schönemann, H.; Siebert, T.: On an
implementation of standard bases and syzygies in SINGULAR.
Proceedings of the Workshop Computational Methods in Lie theory in AAECC (1995)
-
Greuel, G.-M.; Pfister, G.:
Advances and improvements in the theory of standard bases and
syzygies. Arch. d. Math. 63(1995)
-
Kemper; Generating Invariant Rings of Finite Groups over Arbitrary
Fields. 1996, to appear in Journal of Symbolic Computation
-
Kemper and Steel: Some Algorithms in Invariant Theory of Finite Groups. 1997
-
Lee, H.R.; Saunders, B.D.: Fraction Free Gaussian Elimination for
Sparse Matrices. Journal of Symbolic Computation (1995) 19, 393-402
-
Schönemann, H.:
Algorithms in SINGULAR,
Reports on Computer Algebra 2(1996), Kaiserslautern
-
Siebert, T.:
On strategies and implementations for computations of free resolutions.
Reports on Computer Algebra 8(1996), Kaiserslautern
-
Wang, D.:
Characteristic Sets and Zero Structure of Polynomial Sets.
Lecture Notes, RISC Linz, 1989
|