Procedure from library primdec.lib (see primdec_lib).
Usage:
testPrimaryE(pr,k); pr a list, k an ideal.
Assume:
pr is the result of a primary decomposition and may be empty ( for the unit ideal)
Return:
int, 1 if the intersection of the ideals in pr is k, 0 if not
Example:
LIB "primdec.lib";
ring r = 32003,(x,y,z),dp;
poly p = z2+1;
poly q = z4+2;
ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4;
list pr = primdecGTZ(i);
testPrimaryE(pr,i);
==> 1
User manual for Singular version 4.4.1, 2025,
generated by texi2html.