Top
Back: sagbiByDegree
Forward: stanleyreisner_lib
FastBack:
FastForward:
Up: sagbiNormaliz_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.19.3 sagbiHilbControlled

Procedure from library sagbiNormaliz.lib (see sagbiNormaliz_lib).

Usage:
agbiHilbControlled(ideal Q, intvec HS_num_algebra, intvec HS_denom_algebra, int Sagbi_degree_bound [,int finalChweck, int sorting, int verb]);

Return:
An ideal whose generators form the Sagbi basis of the algebra generated by the polynomials inin degrwees <= Sagbi_degree_bound. The computatiojn is controlled by the Hilbert series given by the numerator and the denominator.

If sorting is set, the compouted elements are degrevlex sorted before a round of the algorithm. The optional parameter verb sets the terminal output. Fefault is 1 = on.

The component has a second integer component. Its possible values are: 0, if the full Sagbi basis has not been reached, 1 if this is unknown, and 2 if the full Sagbi basis has been computed.

Example:
 
LIB "sagbiNormaliz.lib";
ring R = 0, (x,y,z),dp;
ideal P = x^6+y^6+z^6, x^7+y^7+z^7, x^8+y^8+z^8;
ideal Q;
intvec HS_num = 1;
intvec HS_denom = 6,7,8;
int success;
// degree bound 40, final check, ,no sorting, no terminal output
(Q,success) = sagbiHilbControlled(P,HS_num, HS_denom,40, 1,0,0);
lead(Q);
==> _[1]=x6
==> _[2]=x7
==> _[3]=x8
==> _[4]=x8y6
==> _[5]=x18y6
==> _[6]=x23y7
==> _[7]=x25y7
"Note: success = 0 <==> Sagbi basis incomplete";
==> Note: success = 0 <==> Sagbi basis incomplete
"success",success;
==> success 0

Top Back: sagbiByDegree Forward: stanleyreisner_lib FastBack: FastForward: Up: sagbiNormaliz_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.0, 2024, generated by texi2html.