|
5.1.94 modulo
Syntax:
modulo ( ideal_expression, ideal_expression )
modulo ( module_expression, module_expression )
modulo ( ideal_expression, ideal_expression{,} string_expression )
modulo ( module_expression, module_expression{,} string_expression )
modulo ( ideal_expression, ideal_expression{,} matrix_name )
Type:
- module
Purpose:
modulo(h1,h2)
represents
where
and are considered as submodules of the same free module
(l=1 for ideals). Let
, resp. ,be the matrices of size , resp. , having the
generators of , resp. ,as columns.
Then
where
is the induced map.
modulo(h1,h2) returns generators of
the kernel of this induced map.
An optional third string argument give the GB algorithm to use.
(default: "std", else: "groebner", "modstd", "slimgb").
An optional third argument (a name of a matrix) gives the matrix to store
the transformation of the input to the GB (see liftstd).
Note:
- If for at least one of
h1 or h2 the attribute "isHomog" is
set, modulo(h1,h2) also sets the attribute "isHomog"
(if possible, that is, if the weights are compatible).
Example:
| ring r;
ideal h1=x,y,z;
ideal h2=x;
module m=modulo(h1,h2);
print(m);
==> 1,0, 0,0,
==> 0,-z,x,0,
==> 0,y, 0,x
|
See
hom_kernel;
syz.
|