|
5.1.106 nres
Syntax:
nres ( ideal_expression, int_expression )
nres ( module_expression, int_expression )
Type:
- resolution
Purpose:
- computes a free resolution of an ideal or module M which is minimized from
the second module on (by the standard basis method).
More precisely, let
=matrix(M),then nres computes a free resolution of
where the columns of the matrix
are the given set of generators of M.
If the int expression k is not zero then the computation stops after k steps
and returns a list of modules
.
nres(M,0) returns a list of n modules where n is the number of
variables of the basering.
Let list L=nres(M,0); then L[1]=M is identical to the input,
L[2] is a minimal set of generators for the first syzygy
module of L[1] , etc.
(
in the notations from above).
Example:
| ring r=31991,(t,x,y,z,w),ls;
ideal M=t2x2+tx2y+x2yz,t2y2+ty2z+y2zw,
t2z2+tz2w+xz2w,t2w2+txw2+xyw2;
resolution L=nres(M,0);
L;
==> 1 4 15 18 7 1
==> r <-- r <-- r <-- r <-- r <-- r
==>
==> 0 1 2 3 4 5
==> resolution not minimized yet
==>
|
See
fres;
hres;
ideal;
lres;
module;
mres;
res;
resolution;
sres.
|