Top
Back: sat
Forward: select
FastBack:
FastForward:
Up: elim_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.7.8 sat_with_exp

Procedure from library elim.lib (see elim_lib).

Usage:
sat(id,j); id=ideal/module, j=ideal

Return:
list of an ideal/module [1] and an integer [2]:
[1] = saturation of id with respect to j (= union_(k=1...) of id:j^k) [2] = saturation exponent (= min( k | id:j^k = id:j^(k+1) ))

Note:
[1] is a standard basis in the basering

Example:
 
LIB "elim.lib";
ring r     = 2,(x,y,z),dp;
poly F     = x5+y5+(x-y)^2*xyz;
ideal j    = jacob(F);
sat(j,maxideal(1));
==> _[1]=x3+x2y+xy2+y3
==> _[2]=y4+x2yz+y3z
==> _[3]=x2y2+y4
sat(j,maxideal(2));
==> _[1]=x3+x2y+xy2+y3
==> _[2]=y4+x2yz+y3z
==> _[3]=x2y2+y4
See also: modSat; sat.


Top Back: sat Forward: select FastBack: FastForward: Up: elim_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.0, 2024, generated by texi2html.