Top
Back: computeConstant
Forward: gromovWitten
FastBack:
FastForward:
Up: ellipticcovers_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.8.5 evaluateIntegral

Procedure from library ellipticcovers.lib (see ellipticcovers_lib).

Usage:
evaluateIntegral(P,xx); P number, xx list

Assume:
P is a number in a rational function field, xx is a list of variables of the field

Return:
number, the constant coefficient of the Laurent series of f in the variables in the list xx.

Theory:
Computes the constant coefficient of the Laurent series iteratively for the elements of xx.

In the setting of covers of elliptic curves this is the path integral over the propagator divided by the product of all variables (corresponding to the vertices) computed as a residue.

Example:
 
LIB "ellipticcovers.lib";
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
number p = propagator(G,list(0,2,1,0,0,1));
evaluateIntegral(p,list(x1,x3,x4,x2));
==> 128


Top Back: computeConstant Forward: gromovWitten FastBack: FastForward: Up: ellipticcovers_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.1, 2025, generated by texi2html.