| LIB "polyclass.lib";
RightEquivalenceChainWithPrecision TT;
ring R=0,(x,y),ds;
poly f = x+y;
Poly F = makePoly(f);
TT.sourcegerm = F;
map phi = R,x-x*y,y;
f=phi(f);
PolynomialRightEquivalence RE;
RE.in=basering;
RE.images = list(makePoly(x-x*y),makePoly(y));
RE.imagesInverse = list(makePoly(x+x*y),makePoly(y));
TT.transformations[size(TT.transformations)+1]=RE;
TT.targetgerm.in = basering;
TT.targetgerm.value=f;
ring S = (0,a),(x,y),ds;
minpoly=a^2+1;
poly f = fetch(R,f);
map phi = R,x-a*x*y,y;
f=phi(f);
PolynomialRightEquivalence RE;
==> // ** redefining RE (PolynomialRightEquivalence RE;) ./examples/printRigh\
tEquivalenceChainWithPrecision.sing:21
RE.in=basering;
RE.images = list(makePoly(x-a*x*y),makePoly(y));
RE.imagesInverse = list(makePoly(x+a*x*y),makePoly(y));
TT.transformations[size(TT.transformations)+1]=RE;
TT.targetgerm.in = basering;
TT.targetgerm.value=f;
setring R;
printRightEquivalenceChainWithPrecision(TT);
==>
==> Source germ = x+y
==>
==> Target germ = x+y+(-a-1)*xy+(a)*xy2
==>
==> Precision = 0
==>
==> Transformations:
==>
==> Transformation:
==> x-->x-xy
==> y-->y
==>
==> Transformation:
==> x-->x+(-a)*xy
==> y-->y
|