Top
Back: printPolynomialRightEquivalence
Forward: printNormalFormEquation
FastBack:
FastForward:
Up: polyclass_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.15.10 printRightEquivalenceChainWithPrecision

Procedure from library polyclass.lib (see polyclass_lib).

Usage:
printRightEquivalenceChainWithPrecision(TT); TT RightEquivalenceChainWithPrecision

Return:
print the chain of transformations TT

Example:
 
LIB "polyclass.lib";
RightEquivalenceChainWithPrecision TT;
ring R=0,(x,y),ds;
poly f = x+y;
Poly F = makePoly(f);
TT.sourcegerm = F;
map phi = R,x-x*y,y;
f=phi(f);
PolynomialRightEquivalence RE;
RE.in=basering;
RE.images = list(makePoly(x-x*y),makePoly(y));
RE.imagesInverse = list(makePoly(x+x*y),makePoly(y));
TT.transformations[size(TT.transformations)+1]=RE;
TT.targetgerm.in = basering;
TT.targetgerm.value=f;
ring S = (0,a),(x,y),ds;
minpoly=a^2+1;
poly f = fetch(R,f);
map phi = R,x-a*x*y,y;
f=phi(f);
PolynomialRightEquivalence RE;
==> // ** redefining RE (PolynomialRightEquivalence RE;) ./examples/printRigh\
   tEquivalenceChainWithPrecision.sing:21
RE.in=basering;
RE.images = list(makePoly(x-a*x*y),makePoly(y));
RE.imagesInverse = list(makePoly(x+a*x*y),makePoly(y));
TT.transformations[size(TT.transformations)+1]=RE;
TT.targetgerm.in = basering;
TT.targetgerm.value=f;
setring R;
printRightEquivalenceChainWithPrecision(TT);
==> 
==>     Source germ = x+y
==> 
==>    Target germ = x+y+(-a-1)*xy+(a)*xy2
==> 
==>    Precision = 0
==> 
==>    Transformations:
==> 
==> Transformation:
==> x-->x-xy
==> y-->y
==> 
==> Transformation:
==> x-->x+(-a)*xy
==> y-->y


Top Back: printPolynomialRightEquivalence Forward: printNormalFormEquation FastBack: FastForward: Up: polyclass_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.1, 2025, generated by texi2html.