Top
Back: printNormalFormEquation
Forward: puiseuxexpansions_lib
FastBack:
FastForward:
Up: polyclass_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.15.12 printNormalForm

Procedure from library polyclass.lib (see polyclass_lib).

Usage:
printNormalForm(F); F NormalForm

Return:
print a normal form with its important characteristics

Example:
 
LIB "polyclass.lib";
ring R=(0,a),(x,y),ds;
minpoly = a^2-2;
poly f=x^4+x^2*y^2+7*a*y^8;
Poly F = makePoly(f);
ring S =(0,a),(x,y),ds;
poly g = x^4+x^2*y^2+a*y^8;
Poly G = makePoly(g);
ring T=QQ,(a),dp;
poly h=a;
Poly H=makePoly(h);
setring R;
NormalForm N;
N.exceptionalHypersurface = H;
N.numbervars =2;
N.corank =2;
N.normalForm = G;
N.normalFormEquation = F;
N.extension1=makePoly(0);
N.extension2=makePoly(0);
N.nondegeneratePart = makePoly(0);
N.semiNormalizedNNBGerm = F;
N.modality = 1;
N.corank = 2;
N.determinacy = 8;
N.milnorNumber = milnor(F.value);
N.parameters = list(makePoly(y^8));
N.singularityType = "X[13]";
printNormalForm(N);
==> Embedding dimension = 2
==> Corank of singularity = 2
==> Normal form of type = X[13]
==> Normal form = x^4+x^2*y^2+(a)*y^8
==> Exceptional Hypersurface = a
==> Normal form equation =x^4+x^2*y^2+(7*a)*y^8
==> Minimal polynomial = (a^2-2)
==> Milnor number = 13
==> Modality = 1
==> Monomials corresponding to moduli terms = y^8
==> Delta invariant = 0
==> Number of branches = 0
==> Determinacy <= 8
==> Non-degenerate part = 0
==> Chain of transformations before Morse split of length 0
==> Chain of transformations after Morse split of length 0
==> 

Top Back: printNormalFormEquation Forward: puiseuxexpansions_lib FastBack: FastForward: Up: polyclass_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.1, 2025, generated by texi2html.