Top
Back: Computing Groebner and Standard Bases
Forward: Groebner basis conversion
FastBack: Dynamic modules
FastForward: Commutative Algebra
Up: Computing Groebner and Standard Bases
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

A.2.1 groebner and std

The basic version of Buchberger's algorithm leaves a lot of freedom in carrying out the computational process. Considerable improvements are obtained by implementing criteria for reducing the number of S-polynomials to be actually considered (e.g., by applying the product criterion or the chain criterion). We refer to Cox, Little, and O'Shea [1997], Chapter 2 for more details and references on these criteria and on further strategies for improving the performance of Buchberger's algorithm (see also Greuel, Pfister [2002]).

SINGULAR's implementation of Buchberger's algorithm is available via the std command ('std' referring to standard basis). The computation of reduced Groebner and standard bases may be forced by setting option(redSB) (see option).

However, depending on the monomial ordering of the active basering, it may be advisable to use the groebner command instead. This command is provided by the SINGULAR library standard.lib which is automatically loaded when starting a SINGULAR session. Depending on some heuristics, groebner either refers to the std command (e.g., for rings with ordering dp), or to one of the algorithms described in the sections Groebner basis conversion, slim Groebner bases. For information on the heuristics behind groebner, see the library file standard.lib (see also Procedures and libraries).

We apply the commands std and groebner to compute a lexicographic Groebner basis for the ideal of cyclic roots over the basering with 6 variables (see Cyclic roots). We set option(prot) to make SINGULAR display some information on the performed computations (see option for an interpretation of the displayed symbols). For long running computations, it is always recommended to set this option.

 
LIB "polylib.lib";
ring r=32003,(a,b,c,d,e,f),lp;
ideal I=cyclic(6);
option(prot);
int t=timer;
system("--ticks-per-sec", 100);         // give time in 1/100 sec
ideal sI=std(I);
==> [1048575:2]1(5)s2(4)s3(3)s4s(4)s5(6)s(9)s(11)s(14)s(17)-s6s(19)s(21)s(24)\
   s(27)s(30)s(33)s(35)s(38)s(41)ss(42)-s----s7(41)s(43)s(46)s(48)s(51)s(54)\
   s(56)s(59)s(62)s(63)s(65)s(66)s(68)s(70)s(73)s(75)s(78)---ss(81)---------\
   --s(73)--------8-s(66)s(69)s(72)s(75)s(77)s(80)s(81)s(83)s(85)s(88)s(91)s\
   (93)s(96)s(99)s(102)s(105)s(107)s(110)s(113)-------------(100)-----------\
   s(101)s(108)s(110)----------(100)--------9-s(94)s(97)s(99)s(84)s(74)s(77)\
   s(80)---ss(83)s(86)s(73)s(76)s10(78)s(81)s(82)s(84)s(86)s(89)s(92)s(94)s(\
   97)s(100)s(103)s(82)s(84)s(86)s(89)s(92)s(95)s11(98)s(87)s(90)s(93)s(95)s\
   (98)s(101)s(104)----(100)---12-s(99)s(90)s(93)s(92)---------s(86)--------\
   ---13-s(74)s(77)s(79)s(82)s(85)s(88)------------------14-s(64)s(67)ss(70)\
   s(73)s(77)s(81)-----------------------15-s(57)s(65)s(68)ss(71)-----------\
   ------s(57)----16-s(55)ss(56)------------------------17-s(34)s(32)-------\
   -18-s(26)s(28)s-----19-s(25)s(28)s(31)------20-s(27)s(30)s(35)-------21-s\
   (23)s(26)------22-s(22)------23-s(15)24-s(17)-s(19)--25-s(18)s(19)s26-s(2\
   1)---------27-s(11)28-s(13)--29-s(12)-30--s--31-s(11)---32-s33(7)s(10)---\
   34-s-35----36-s37(6)s38s39s40---42-s43(5)s44s45--48-s49s50s51---54-s55(4)\
   --67-86-
==> product criterion:664 chain criterion:2844
timer-t;                                // used time (in 1/100 secs)
==> 8
size(sI);
==> 17
t=timer;
sI=groebner(I);
==> compute hilbert series with std in ring (ZZ/32003),(a,b,c,d,e,f,@),(dp(7)\
   ,C)
==> weights used for hilbert series: 1,1,1,1,1,1,1
==> [65535:2]1(5)s2(4)s3(3)s4ss5(4)s(5)s(7)-s6(8)s(9)s(11)s(13)s(16)s(18)s(21\
   )--s7(22)s(23)s(24)s(27)s(29)s(31)s(32)s(35)-s(37)s(40)s(42)s(44)s(45)--s\
   (46)s(48)-----8-s(44)s(47)s(50)s(52)s(55)s(57)s(59)s(61)-s(63)----s(62)--\
   --s(61)s(64)-s(66)-----------s(58)-------9-s(53)s(56)s(59)s(62)s(65)s(68)\
   s(71)s(74)s(77)s(80)s(83)s(86)s(90)s(95)s(102)s(108)--------(100)--------\
   --------------s(81)---10-s(83)s(88)s(90)s(94)s(99)s(104)s(109)s(114)-s(11\
   6)s(121)s(126)s(128)s(132)--------------------------------(100)----------\
   ----11-s(87)---------------------------------------12-s(50)--------13-s(4\
   4)s(47)s(51)s(55)-------------14-s(45)s(48)s(51)s(55)s(58)s(61)s(64)s(67)\
   s(70)--------------------15-s(52)s(55)s(58)s(61)s(64)s(67)s(70)s(73)s(76)\
   s(79)s(82)-------------------------------------16------------------------\
   --------------------17-
==> product criterion:284 chain criterion:4184
==> std with hilb in (ZZ/32003),(a,b,c,d,e,f,@),(lp(6),dp(1),C)
==> [65535:2]1(98)s2(97)s3(96)s4s(97)-s5(98)s(101)s(103)s(106)s(109)---s6(107\
   )s(109)s(111)s(114)s(117)s(120)s(123)s(125)s(128)s(131)ss(132)-s---------\
   -s7(125)s(127)s(130)s(132)s(135)s(138)s(140)s(143)s(146)s(147)s(149)s(150\
   )s(152)s(154)s(157)s(159)s(162)---ss(165)-----------shhhhhhhhhhhhhhhhhhhh\
   hhh8(134)s(136)s(139)s(142)s(145)s(147)s(150)s(151)s(153)s(155)s(158)s(16\
   1)s(163)s(166)s(169)s(172)s(175)s(177)s(180)s(183)-----------------------\
   -s(171)s(178)shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh9(147)s(150)s(153)s(155)s(\
   181)s(184)s(187)s(190)s(203)s(208)s(213)s(217)s(218)s(220)s(222)s(225)---\
   s-s(226)-----------s(219)---------shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh\
   hhhhhhhhhhh10(163)s(166)s(168)s(171)s(177)s(180)s(183)s(186)shhhhhhhhhhhh\
   hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh11(125)s(128)s(13\
   0)s(133)s(136)shhhhhhhhhhhhhhhhhhhhhhhhhhhhh12(110)s(113)s(120)s(123)s(12\
   7)-------------shhhhhhhhhhhhhhh13(102)s(106)s(109)s(111)s(114)s(117)----s\
   hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh14(85)s(90)s(93)s(97)s(100)s(103)---(100)-\
   s(103)shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh15(68)s(72)s(75)s(79)s(85)-\
   ---shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh16(42)s(45)s(49)shhhhhhhhh\
   hhhhhhhhhhhhh17(34)s(37)shhhhhhhhhhhhhh18(27)s(30)s(32)-shhhhhhhhh19(26)s\
   (29)s(32)shhhhhhhhhhhhh20(22)s(25)s(28)shhhhhhhhhhhhh21(20)s(26)shhhhhhhh\
   hhhh22(18)shhhhhhhhh23(12)shhhhh24(11)s(14)-shhhh25(13)s(18)-s(21)shhhhhh\
   h26(18)shhhhhhhhhhhh27(9)shhhhh28(8)shhhh29(7)shhhh30(8)-shhh31shhhhh32(7\
   )shhhh33shhhh34(6)shhhhhhhh36(2)s37(6)shhhh38shhhh39shhhhhhhh42(2)s43(5)s\
   hhhh44shhhhhhhh48s49shhhh50shhhhhhhh54shhhhh
==> product criterion:720 chain criterion:11620
==> hilbert series criterion:532
==> dehomogenization
==> simplification
==> imap to ring (ZZ/32003),(a,b,c,d,e,f),(lp(6),C)
timer-t;                                // used time (in 1/100 secs)
==> 6
size(sI);
==> 17
option(noprot);


Top Back: Computing Groebner and Standard Bases Forward: Groebner basis conversion FastBack: Dynamic modules FastForward: Commutative Algebra Up: Computing Groebner and Standard Bases Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.0, 2024, generated by texi2html.