Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - Very long computation
Author Message
  Post subject:  Re: very long computation with parameters  Reply with quote
It is often faster to avoid parameters:
instead of the ring r=(0,p1, p2, x, y ), (u1, u2, u3, u4 ), lp;
define ring R=0,(u1,u2,u3,u4, p1,p2,x,y),(lp(4),dp);
do your groebner calculation in that ring R and simplify
the result (i.e. remove all but one element with the same leading
monomial w.r.t. u1..u4.

Hans Schoenemann
Post Posted: Wed Dec 13, 2006 8:43 pm
  Post subject:  Very long computation  Reply with quote
Hi,

I'm trying to make computations with Singular like the following one. They are very very long (after two days I'm still waiting...). Is there something that I can do to speed the computation?

Thanks, Nicola

**********************

ring r = ( 0, p1, p2, x, y ), (u1, u2, u3, u4 ), lp;


// For every generator n/d of your field you construct a polynomial
// n(u1,u2,u3,u4)-n(p1,p2,x,y)/d(p1,p2,x,y)*d(u1,u2,u3,u4). The u1,
// u2,u3,u4 are new variables whereas the p1,p2,x,y are parameters
// (meaning we calculate these polynomials over Q(p1,p2,x,y)[u1,u2,u3,u4].


poly F = (2*u1*u2+u4*u3^3+u4^3*u3)*(u4*u1+u2*u3)-(2*p1*p2+y*x^3+y^3*x)*(y*p1+p2*x) ;


poly G = (u3*u1+u4*u2)*(2*u1*u2+u4*u3^3+u4^3*u3)^2-(x*p1+y*p2)*(2*p1*p2+y*x^3+y^3*x)^2 ;


poly H1 = 1/2*u1^2+1/2*u2^2+1/8*u3^4+3/4*u3^2*u4^2+1/8*u4^4-1/2*p1^2-1/2*p2^2-1/8*x^4-3/4*x^2*y^2-1/8*y^4 ;


poly H2 = (u1*u2+1/2*u3*u4*(u3^2+u4^2))^2-(p1*p2+1/2*x*y*(x^2+y^2))^2 ;


poly FF = 2*(u4*u3^5+4*u4^3*u3^3+2*u1*u2*u3^2+u4^5*u3+2*u1*u2*u4^2)*(2*u1*u2+u4*u3^3+u4^3*u3)-2*(y*x^5+4*y^3*x^3+2*p1*p2*x^2+y^5*x+2*p1*p2*y^2)*(2*p1*p2+y*x^3+y^3*x) ;


ideal H = H1, H2, F, G ;

ideal J = groebner( H );

reduce( FF, J);
Post Posted: Tue Dec 12, 2006 6:13 pm


It is currently Fri May 13, 2022 10:59 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group