Back to Forum | View unanswered posts | View active topics
Topic review - qring inside qring |
Author |
Message |
|
|
Post subject: |
Re: qring inside qring |
 |
|
Dear Hendrik Suess,
thanks for Your note.
This behaviour has been recently fixed.
Best regards, Oleksandr Motsak
Dear Hendrik Suess,
thanks for Your note.
This behaviour has been recently fixed.
Best regards, Oleksandr Motsak
|
|
|
 |
Posted: Wed Apr 23, 2008 12:25 pm |
|
|
 |
|
|
Post subject: |
qring inside qring |
 |
|
Hello,
a call of qring inside a qring results in a quotient of a polynomial ring by the new ideal, but the old one gets lost:
> ring r=0,(x,y),dp; > qring qr=std(x^2); > basering; // characteristic : 0 // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C // quotient ring from ideal _[1]=x2 > qring qqr=std(y^2); > basering; // characteristic : 0 // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C // quotient ring from ideal _[1]=y2
as a solution I suggest a improved version of qring:
proc quotientRing(ideal I){ def @r=basering; list rl=ringlist(@r); list rl2=rl; rl2[4]=ideal(0); def @rr=ring(rl2); setring @rr; ideal I=imap(@r,I); list rl=imap(@r,rl); I=I+rl[4]; I=std(I); rl[4]=I; def @rrr=ring(rl); return(@rrr); }
best regards
Hendrik Suess
Hello,
a call of qring inside a qring results in a quotient of a polynomial ring by the new ideal, but the old one gets lost:
> ring r=0,(x,y),dp; > qring qr=std(x^2); > basering; // characteristic : 0 // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C // quotient ring from ideal _[1]=x2 > qring qqr=std(y^2); > basering; // characteristic : 0 // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C // quotient ring from ideal _[1]=y2
as a solution I suggest a improved version of qring:
proc quotientRing(ideal I){ def @r=basering; list rl=ringlist(@r); list rl2=rl; rl2[4]=ideal(0); def @rr=ring(rl2); setring @rr; ideal I=imap(@r,I); list rl=imap(@r,rl); I=I+rl[4]; I=std(I); rl[4]=I; def @rrr=ring(rl); return(@rrr); }
best regards
Hendrik Suess
|
|
|
 |
Posted: Fri Apr 18, 2008 1:25 pm |
|
|
 |
|
|
It is currently Fri May 13, 2022 11:05 am
|
|