Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - ideal membership test
Author Message
  Post subject:  Re: ideal membership test  Reply with quote
Probably "lift" is what you want

> lift(I,a*b+a*c);
_[1,1]=a
_[2,1]=a
>
Post Posted: Tue Jul 20, 2010 11:02 am
  Post subject:  ideal membership test  Reply with quote
Hi,
Currently, I am running some experiments about ideal membership test using command "reduce".
For example:
ring r=(2,X),(a,b,c),dp;
minpoly=1+X^3+X^4;
ideal I=b,c;
slimgb(I);
_[1]=c
_[2]=b
reduce(a*b+a*c,I);
0

The problem now is that how to get the quotient of the ideal division.
For example, given ideal <b,c>, given polynomial "a*b+a*c", the ideal membership testing is actually polynomial division. Now I want to get the quotient, in this example, it is (a,a).

Is there a command to get the quotient which is similar to the Maple command "NormalForm" in link:
http://www.maplesoft.com/support/help/M ... NormalForm
The 4th parameter of "NormalForm" stores the quotients.

thanks.
Gepo
Post Posted: Tue Jul 20, 2010 12:22 am


It is currently Fri May 13, 2022 11:07 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group