Hello,
I am in trouble interpreting the results produced by "std(Plural)" and "liftstd(Plural)".
As far as I understand, they both return a left Groebner basis of an ideal or a module.
In the following example, their results do not agree with each other; the variable T appears in one Groebner basis, but not in the other.
I would appreciate your help. Thank you.
---------------------------------------------------
> LIB "nctools.lib"; > option(redSB); > option(redTail); > ring r=(0,q),(U,V,S,T),lp; > matrix C[4][4]; C[1,2]=1/q; C[1,3]=1; C[1,4]=1; C[2,3]=1; C[2,4]=1; C[3,4]=1/q; > def R=nc_algebra(C,0); > setring R; > R; // characteristic : 0 // 1 parameter : q // minpoly : 0 // number of vars : 4 // block 1 : ordering lp // : names U V S T // block 2 : ordering C // noncommutative relations: // VU=1/(q)*UV // TS=1/(q)*ST > ideal I=U*V+S-V-1,U-V-V*T,U+V-V*S; > I; I[1]=UV-V+S-1 I[2]=U-VT-V I[3]=U-VS+V > ideal G=std(I); > matrix M; > ideal H=liftstd(I,M); > G; G[1]=T G[2]=S-1 G[3]=V G[4]=U > std(G); _[1]=T _[2]=S-1 _[3]=V _[4]=U > H; H[1]=(q7-q6-3q5+5q4-2q3)*S+(-q7+q6+3q5-5q4+2q3) H[2]=(-q11+2q10+2q9-8q8+7q7-2q6)*V H[3]=(q6-3q4+2q3)*U > std(H); _[1]=S-1 _[2]=V _[3]=U
Hello,
I am in trouble interpreting the results produced by "std(Plural)" and "liftstd(Plural)".
As far as I understand, they both return a left Groebner basis of an ideal or a module.
In the following example, their results do not agree with each other; the variable T appears in one Groebner basis, but not in the other.
I would appreciate your help. Thank you.
---------------------------------------------------
> LIB "nctools.lib"; > option(redSB); > option(redTail); > ring r=(0,q),(U,V,S,T),lp; > matrix C[4][4]; C[1,2]=1/q; C[1,3]=1; C[1,4]=1; C[2,3]=1; C[2,4]=1; C[3,4]=1/q; > def R=nc_algebra(C,0); > setring R; > R; // characteristic : 0 // 1 parameter : q // minpoly : 0 // number of vars : 4 // block 1 : ordering lp // : names U V S T // block 2 : ordering C // noncommutative relations: // VU=1/(q)*UV // TS=1/(q)*ST > ideal I=U*V+S-V-1,U-V-V*T,U+V-V*S; > I; I[1]=UV-V+S-1 I[2]=U-VT-V I[3]=U-VS+V > ideal G=std(I); > matrix M; > ideal H=liftstd(I,M); > G; G[1]=T G[2]=S-1 G[3]=V G[4]=U > std(G); _[1]=T _[2]=S-1 _[3]=V _[4]=U > H; H[1]=(q7-q6-3q5+5q4-2q3)*S+(-q7+q6+3q5-5q4+2q3) H[2]=(-q11+2q10+2q9-8q8+7q7-2q6)*V H[3]=(q6-3q4+2q3)*U > std(H); _[1]=S-1 _[2]=V _[3]=U
|