| 
		
	
	
		Back to Forum | View unanswered posts | View active topics
		
	 
	| Topic review - Bug in minAssGTZ with real coefficients? |  
	| 
		
		
			| Author | Message |  
				|  | 
					
						|  | Post subject: | Re: Bug in minAssGTZ with real coefficients? |  |  |  
				| 
					
						| 
							
								| main incredience of minAssGTZ are Groebner bases,which are not useful for inexact coeffcients, and factorization,
 which is not implemented for inexact coeffcients:
 in short: that cannot work.
 main incredience of minAssGTZ are Groebner bases,which are not useful for inexact coeffcients, and factorization,
 which is not implemented for inexact coeffcients:
 in short: that cannot work.
 |  |  
						| 
							
								|  |  | Posted: Sat Aug 25, 2018 4:52 pm |  |  |  
				|  |  
				|  | 
					
						|  | Post subject: | Bug in minAssGTZ with real coefficients? |  |  |  
				| 
					
						| 
							
								| Hi all,
 The following program causes Singular to receive a segmentation fault and exit.
 
 (background: if you replace the coefficient ring to Q, the program works, but is very slow: the std in the beginning takes about an hour. I guessed that the reason was the appearnace of very large coefficients and tried to switch to real coefficients. It really made the program faster, but...)
 
 Thanks,
 
 ring R=(real,200),(a,b,c,d,e,f),dp;
 poly pxb=a+b*d-a*b*d+c*e-a*c*e-b*c*d*e+a*b*c*d*e+c*d*f-a*c*d*f-b*c*d*f+a*b*c*d*f+b*e*f-a*b*e*f-b*c*e*f+a*b*c*e*f-b*d*e*f+a*b*d*e*f-c*d*e*f+a*c*d*e*f+2b*c*d*e*f-2a*b*c*d*e*f;
 poly pxA=a+b-a*b+c-a*c-b*c+a*b*c;
 poly pab=a*b+d-a*b*d+b*c*e-a*b*c*e-b*c*d*e+a*b*c*d*e+a*c*f-a*b*c*f-a*c*d*f+a*b*c*d*f+e*f-a*b*e*f-a*c*e*f-b*c*e*f+2a*b*c*e*f-d*e*f+a*b*d*e*f+a*c*d*e*f+b*c*d*e*f-2a*b*c*d*e*f;
 poly pa2b=a*c+b*c*d-a*b*c*d+e-a*c*e-b*c*d*e+a*b*c*d*e+a*b*f-a*b*c*f+d*f-a*b*d*f-a*c*d*f-b*c*d*f+2a*b*c*d*f-a*b*e*f+a*b*c*e*f-d*e*f+a*b*d*e*f+a*c*d*e*f+b*c*d*e*f-2a*b*c*d*e*f;
 poly dpxb0=1-b*d-c*e+b*c*d*e-c*d*f+b*c*d*f-b*e*f+b*c*e*f+b*d*e*f+c*d*e*f-2b*c*d*e*f;
 poly dpxA0=1-b-c+b*c;
 poly dpab0=b-b*d-b*c*e+b*c*d*e+c*f-b*c*f-c*d*f+b*c*d*f-b*e*f-c*e*f+2b*c*e*f+b*d*e*f+c*d*e*f-2b*c*d*e*f;
 poly dpxb1=d-a*d-c*d*e+a*c*d*e-c*d*f+a*c*d*f+e*f-a*e*f-c*e*f+a*c*e*f-d*e*f+a*d*e*f+2c*d*e*f-2a*c*d*e*f;
 poly dpxA1=1-a-c+a*c;
 poly dpab1=a-a*d+c*e-a*c*e-c*d*e+a*c*d*e-a*c*f+a*c*d*f-a*e*f-c*e*f+2a*c*e*f+a*d*e*f+c*d*e*f-2a*c*d*e*f;
 poly dpxb2=e-a*e-b*d*e+a*b*d*e+d*f-a*d*f-b*d*f+a*b*d*f-b*e*f+a*b*e*f-d*e*f+a*d*e*f+2b*d*e*f-2a*b*d*e*f;
 poly dpxA2=1-a-b+a*b;
 poly dpab2=b*e-a*b*e-b*d*e+a*b*d*e+a*f-a*b*f-a*d*f+a*b*d*f-a*e*f-b*e*f+2a*b*e*f+a*d*e*f+b*d*e*f-2a*b*d*e*f;
 poly dpxb3=b-a*b-b*c*e+a*b*c*e+c*f-a*c*f-b*c*f+a*b*c*f-b*e*f+a*b*e*f-c*e*f+a*c*e*f+2b*c*e*f-2a*b*c*e*f;
 poly dpxA3=0;
 poly dpab3=1-a*b-b*c*e+a*b*c*e-a*c*f+a*b*c*f-e*f+a*b*e*f+a*c*e*f+b*c*e*f-2a*b*c*e*f;
 poly dpxb4=c-a*c-b*c*d+a*b*c*d+b*f-a*b*f-b*c*f+a*b*c*f-b*d*f+a*b*d*f-c*d*f+a*c*d*f+2b*c*d*f-2a*b*c*d*f;
 poly dpxA4=0;
 poly dpab4=b*c-a*b*c-b*c*d+a*b*c*d+f-a*b*f-a*c*f-b*c*f+2a*b*c*f-d*f+a*b*d*f+a*c*d*f+b*c*d*f-2a*b*c*d*f;
 poly dpxb5=c*d-a*c*d-b*c*d+a*b*c*d+b*e-a*b*e-b*c*e+a*b*c*e-b*d*e+a*b*d*e-c*d*e+a*c*d*e+2b*c*d*e-2a*b*c*d*e;
 poly dpxA5=0;
 poly dpab5=a*c-a*b*c-a*c*d+a*b*c*d+e-a*b*e-a*c*e-b*c*e+2a*b*c*e-d*e+a*b*d*e+a*c*d*e+b*c*d*e-2a*b*c*d*e;
 ideal I=pab-pa2b,dpxb0-pxA*dpab0-dpxA0*pab,dpxb1-pxA*dpab1-dpxA1*pab,dpxb2-pxA*dpab2-dpxA2*pab,dpxb3-pxA*dpab3-dpxA3*pab,dpxb4-pxA*dpab4-dpxA4*pab,dpxb5-pxA*dpab5-dpxA5*pab;
 option(prot);
 LIB "primdec.lib";
 list l=minAssGTZ(I);
 Hi all,
 The following program causes Singular to receive a segmentation fault and exit.
 
 (background: if you replace the coefficient ring to Q, the program works, but is very slow: the std in the beginning takes about an hour. I guessed that the reason was the appearnace of very large coefficients and tried to switch to real coefficients. It really made the program faster, but...)
 
 Thanks,
 
 ring R=(real,200),(a,b,c,d,e,f),dp;
 poly pxb=a+b*d-a*b*d+c*e-a*c*e-b*c*d*e+a*b*c*d*e+c*d*f-a*c*d*f-b*c*d*f+a*b*c*d*f+b*e*f-a*b*e*f-b*c*e*f+a*b*c*e*f-b*d*e*f+a*b*d*e*f-c*d*e*f+a*c*d*e*f+2b*c*d*e*f-2a*b*c*d*e*f;
 poly pxA=a+b-a*b+c-a*c-b*c+a*b*c;
 poly pab=a*b+d-a*b*d+b*c*e-a*b*c*e-b*c*d*e+a*b*c*d*e+a*c*f-a*b*c*f-a*c*d*f+a*b*c*d*f+e*f-a*b*e*f-a*c*e*f-b*c*e*f+2a*b*c*e*f-d*e*f+a*b*d*e*f+a*c*d*e*f+b*c*d*e*f-2a*b*c*d*e*f;
 poly pa2b=a*c+b*c*d-a*b*c*d+e-a*c*e-b*c*d*e+a*b*c*d*e+a*b*f-a*b*c*f+d*f-a*b*d*f-a*c*d*f-b*c*d*f+2a*b*c*d*f-a*b*e*f+a*b*c*e*f-d*e*f+a*b*d*e*f+a*c*d*e*f+b*c*d*e*f-2a*b*c*d*e*f;
 poly dpxb0=1-b*d-c*e+b*c*d*e-c*d*f+b*c*d*f-b*e*f+b*c*e*f+b*d*e*f+c*d*e*f-2b*c*d*e*f;
 poly dpxA0=1-b-c+b*c;
 poly dpab0=b-b*d-b*c*e+b*c*d*e+c*f-b*c*f-c*d*f+b*c*d*f-b*e*f-c*e*f+2b*c*e*f+b*d*e*f+c*d*e*f-2b*c*d*e*f;
 poly dpxb1=d-a*d-c*d*e+a*c*d*e-c*d*f+a*c*d*f+e*f-a*e*f-c*e*f+a*c*e*f-d*e*f+a*d*e*f+2c*d*e*f-2a*c*d*e*f;
 poly dpxA1=1-a-c+a*c;
 poly dpab1=a-a*d+c*e-a*c*e-c*d*e+a*c*d*e-a*c*f+a*c*d*f-a*e*f-c*e*f+2a*c*e*f+a*d*e*f+c*d*e*f-2a*c*d*e*f;
 poly dpxb2=e-a*e-b*d*e+a*b*d*e+d*f-a*d*f-b*d*f+a*b*d*f-b*e*f+a*b*e*f-d*e*f+a*d*e*f+2b*d*e*f-2a*b*d*e*f;
 poly dpxA2=1-a-b+a*b;
 poly dpab2=b*e-a*b*e-b*d*e+a*b*d*e+a*f-a*b*f-a*d*f+a*b*d*f-a*e*f-b*e*f+2a*b*e*f+a*d*e*f+b*d*e*f-2a*b*d*e*f;
 poly dpxb3=b-a*b-b*c*e+a*b*c*e+c*f-a*c*f-b*c*f+a*b*c*f-b*e*f+a*b*e*f-c*e*f+a*c*e*f+2b*c*e*f-2a*b*c*e*f;
 poly dpxA3=0;
 poly dpab3=1-a*b-b*c*e+a*b*c*e-a*c*f+a*b*c*f-e*f+a*b*e*f+a*c*e*f+b*c*e*f-2a*b*c*e*f;
 poly dpxb4=c-a*c-b*c*d+a*b*c*d+b*f-a*b*f-b*c*f+a*b*c*f-b*d*f+a*b*d*f-c*d*f+a*c*d*f+2b*c*d*f-2a*b*c*d*f;
 poly dpxA4=0;
 poly dpab4=b*c-a*b*c-b*c*d+a*b*c*d+f-a*b*f-a*c*f-b*c*f+2a*b*c*f-d*f+a*b*d*f+a*c*d*f+b*c*d*f-2a*b*c*d*f;
 poly dpxb5=c*d-a*c*d-b*c*d+a*b*c*d+b*e-a*b*e-b*c*e+a*b*c*e-b*d*e+a*b*d*e-c*d*e+a*c*d*e+2b*c*d*e-2a*b*c*d*e;
 poly dpxA5=0;
 poly dpab5=a*c-a*b*c-a*c*d+a*b*c*d+e-a*b*e-a*c*e-b*c*e+2a*b*c*e-d*e+a*b*d*e+a*c*d*e+b*c*d*e-2a*b*c*d*e;
 ideal I=pab-pa2b,dpxb0-pxA*dpab0-dpxA0*pab,dpxb1-pxA*dpab1-dpxA1*pab,dpxb2-pxA*dpab2-dpxA2*pab,dpxb3-pxA*dpab3-dpxA3*pab,dpxb4-pxA*dpab4-dpxA4*pab,dpxb5-pxA*dpab5-dpxA5*pab;
 option(prot);
 LIB "primdec.lib";
 list l=minAssGTZ(I);
 |  |  
						| 
							
								|  |  | Posted: Fri Aug 17, 2018 7:29 pm |  |  |  
				|  |  |  
		
		
			|  | It is currently Fri May 13, 2022 10:59 am 
 |  |