Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - parametrization with respect to given variables
Author Message
  Post subject:  Re: parametrization with respect to given variables  Reply with quote
For this example primdecGTZ is too expensive, however, minAssGTZ works
(here also triangMH or triangM seem to work too). For your purpose one has
to declare h13,h123,h23,h12,c,h1,h2,h3 as parameters and s1,s12,s13 as
variables:

option(prot);
ring r = (0,h13,h123,h23,h12,c,h1,h2,h3),(s1,s12,s13),lp;
ideal i =
12*h23*s1^2*s13^2+12*h13*s1^3*s13+2*h23*s12*s1^3-10*h23*s1^2*s13
...
+h3*s12*s13+h123*s12*s1+h123*s12*s13;

list ma = minAssGTZ(i); //the minimal associated primes
ma;
[1]:
_[1]=s13
_[2]=s1
[2]:
_[1]=(-2*c^2)*s13+(h13^2+h13*h123+2*h13*h23+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2+h23*h1+h23*h2+h23*h3+h1*h3+h2*h3)
_[2]=(-h13*c^2-h123*c^2-h23*c^2+c^3-c^2*h1-c^2*h2-c^2*h3)*s12+(-h13^2*h12-h13*h123*h12-2*h13*h23*h12+2*h13*h12*c-h13*h12*h1-h13*h12*h2-h13*h12*h3-h123*h23*h12
+h123*h12*c-h123*h12*h1-h123*h12*h2-h23^2*h12+2*h23*h12*c-h23*h12*h1-h23*h12*h2-h23*h12*h3-h12*c^2+h12*c*h1+h12*c*h2+h12*c*h3-h12*h1*h3-h12*h2*h3)
_[3]=(-2*c^2)*s1+(-h13^2-h13*h123-2*h13*h23+h13*c-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2+h23*c-h23*h1-h23*h2-h23*h3+c*h1+c*h2-h1*h3-h2*h3)
[3]:
_[1]=s12
_[2]=2*s1+2*s13-1
[4]:
_[1]=s12
_[2]=s1

//Or, if you wish to normalize the second solution, then you get the expression for
//s13,s12 and s1 directly (of course, you get the solutions by setting the
//polynomials 0):

normalize(ma[2]);
_[1]=s13+(-h13^2-h13*h123-2*h13*h23-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2-h23*h1-h23*h2-h23*h3-h1*h3-h2*h3)/(2*c^2)
_[2]=s12+(h13^2*h12+h13*h123*h12+2*h13*h23*h12-2*h13*h12*c+h13*h12*h1+h13*h12*h2+h13*h12*h3+h123*h23*h12-h123*h12*c+h123*h12*h1+h123*h12*h2+h23^2*h12-2*h23*h12*c
+h23*h12*h1+h23*h12*h2+h23*h12*h3+h12*c^2-h12*c*h1-h12*c*h2-h12*c*h3+h12*h1*h3+h12*h2*h3)/(h13*c^2+h123*c^2+h23*c^2-c^3+c^2*h1+c^2*h2+c^2*h3)
_[3]=s1+(h13^2+h13*h123+2*h13*h23-h13*c+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2-h23*c+h23*h1+h23*h2+h23*h3-c*h1-c*h2+h1*h3+h2*h3)/(2*c^2)

email: greuel@mathematik.uni-kl.de
Posted in old Singular Forum on: 2002-02-03 10:10:53+01
Post Posted: Thu Aug 11, 2005 5:42 pm
  Post subject:  parametrization with respect to given variables  Reply with quote
I have 3 polynomials with the variables {s13, h13, h123,
h23, s12, h12, c, h1, h2, h3, s1}. Please see if you can express from
this the variables {s1,s12, s13} in terms of the others.

email: singular@mathematik.uni-kl.de
Posted in old Singular Forum on: 2002-02-03 10:08:32+01
Post Posted: Thu Aug 11, 2005 5:31 pm


It is currently Fri May 13, 2022 10:57 am
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group