Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - question-multiplicative subsets
Author Message
  Post subject:  thanks -multiplicative subsets  Reply with quote
thanks a lot for your answer,

kind regards,
gema m.
Post Posted: Sat Nov 15, 2008 11:22 am
  Post subject:   Reply with quote
Hi,
You can localize in the maximal ideal <x1,...,xn> just by defining a local ring (local ordering, ends with an s = referring to series) eg.
ring r = 0,x(1..n),ds;
Localization in any other maximal ideal <x1-p1,...,xn-pn> is possible by translation of p to 0 (apply the translation to your ideal) and then as above.
Localizations w.r.t. arbitrary mlutiplicative sets are not possible.

If you wish to analyse a 0-dim ideal you should try a primary decomposition first.

sat(J,g); does the saturation.

Here is an example:

ring r = 0,(x,y,z),dp;
poly g = x3+y5+z2 +xyz;
ideal J = jacob(g);
LIB"primdec.lib";
primdecGTZ(J);
/*
[1]:
[1]:
_[1]=z2
_[2]=y3z
_[3]=30y4+y2z
_[4]=-y2z+6xz
_[5]=xy+2z
_[6]=3x2+yz
[2]:
_[1]=z
_[2]=y
_[3]=x
[2]:
[1]:
_[1]=z+3888000
_[2]=y-360
_[3]=x-21600
[2]:
_[1]=z+3888000
_[2]=y-360
_[3]=x-21600
*/
sat(J,g);
/*
[1]:
_[1]=z+3888000
_[2]=y-360
_[3]=x-21600
[2]:
1
*/
Post Posted: Sat Nov 15, 2008 2:57 am
  Post subject:  question-multiplicative subsets  Reply with quote
Hello everybody,

I would like to know if given a zero dimensional ideal J in Q[x1,...,xn] and a multiplicative subset S of Q[x1,...,xn] , it is possible to define in SINGULAR S-1(Q[x1,...,xn]/J).

And given g in Q[x1,...,xn] , is it possible to define in SINGULAR the saturation of J with respect to g?

thanks in advance for your help,
best wishes,
gema m.
Post Posted: Thu Oct 23, 2008 11:37 am


It is currently Fri May 13, 2022 11:03 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group