Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
#000000 #000040 #000080 #0000BF #0000FF
#004000 #004040 #004080 #0040BF #0040FF
#008000 #008040 #008080 #0080BF #0080FF
#00BF00 #00BF40 #00BF80 #00BFBF #00BFFF
#00FF00 #00FF40 #00FF80 #00FFBF #00FFFF
#400000 #400040 #400080 #4000BF #4000FF
#404000 #404040 #404080 #4040BF #4040FF
#408000 #408040 #408080 #4080BF #4080FF
#40BF00 #40BF40 #40BF80 #40BFBF #40BFFF
#40FF00 #40FF40 #40FF80 #40FFBF #40FFFF
#800000 #800040 #800080 #8000BF #8000FF
#804000 #804040 #804080 #8040BF #8040FF
#808000 #808040 #808080 #8080BF #8080FF
#80BF00 #80BF40 #80BF80 #80BFBF #80BFFF
#80FF00 #80FF40 #80FF80 #80FFBF #80FFFF
#BF0000 #BF0040 #BF0080 #BF00BF #BF00FF
#BF4000 #BF4040 #BF4080 #BF40BF #BF40FF
#BF8000 #BF8040 #BF8080 #BF80BF #BF80FF
#BFBF00 #BFBF40 #BFBF80 #BFBFBF #BFBFFF
#BFFF00 #BFFF40 #BFFF80 #BFFFBF #BFFFFF
#FF0000 #FF0040 #FF0080 #FF00BF #FF00FF
#FF4000 #FF4040 #FF4080 #FF40BF #FF40FF
#FF8000 #FF8040 #FF8080 #FF80BF #FF80FF
#FFBF00 #FFBF40 #FFBF80 #FFBFBF #FFBFFF
#FFFF00 #FFFF40 #FFFF80 #FFFFBF #FFFFFF
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - Module Projection
Author Message
  Post subject:  Re: Module Projection  Reply with quote
This is a matter of linear algebra. The projection is simply done
by multiplication with a suitable projection matrix.
(Recall a projection matrix P is defined by resp. satisfies P^2 = P.)
Code:
// your example:
> ring r=0,(x,y,z),ds;
> ideal i=x2,xy,z4;
> module M=syz(i);
> print(M);
-y,-z4,0, 
x, 0,  -z4,
0, x2, xy 

// Now define the projection matrix
> matrix P = freemodule(3);  // 3 x 3 unit matrix
> P[3,3] = 0;         // kernel is e_3, and identity on e_1,e_2
> print(P);
1,0,0,
0,1,0,
0,0,0
> module PM = P*M;   // the projected module
> print(PM);   // this is what you wish to get
-y,-z4,0, 
x, 0,  -z4,
0, 0,  0   
Post Posted: Tue May 31, 2011 6:00 pm
  Post subject:  Module Projection  Reply with quote
Hi,
I have a very naive question. Let's say that I have a module defined like this:
ring r=0,(x,y,z),ds;
ideal i=x2,xy,z4;
module M=syz(i);
M;
M[1]=x*gen(2)-y*gen(1)
M[2]=x2*gen(3)-z4*gen(1)
M[3]=xy*gen(3)-z4*gen(2)

how can I, not by hand, project this to the module given by gen(1) and gen(2)?, it is, how can I substitute every gen(3) by 0?

Thanks
Post Posted: Fri May 27, 2011 12:43 pm


It is currently Fri May 13, 2022 11:05 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group