Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - Is groebner appropriate?
Author Message
  Post subject:  Is groebner appropriate?  Reply with quote
I have a complicated set of multivariate polynomial equations, all of which are necessarily equal to zero. I had been using groebner bases as a method to solve these by finding the groebner basis (which is usually simpler than the original set) and then running Mathematica's "Solve" command on the resulting equations (setting each polynomial in the basis equal to zero). I am now wondering if this is really the best approach, since (as the number of equations and variables increase) groebner bases seem to be out of reach. Given that the equations are equal to zero, and that the groebner bases algorithm does not seem to be taking this into account, is there another algorithm more specifically designed for this situation?

When I say that the groebner bases algorithm doesn't take this into account, what I mean is the following:
I am expecting many of the variables will themselves be equal to zero (this is what has happened in previous computations, after solving the groebner bases). Let's say for a particular ideal over a ring 0,(x,y,z),dp that x is found to be in the groebner basis. From the algorithms that I see, this will only help eliminate the x variables which are the leading monomials in the remaining polynomials under consideration. Ideally, if the algorithm took into account that this means that x=0, it could greatly simplify the remaining polynomials. It would also be beneficial if the algorithm would also take into account situations where x-y is found in the basis (setting x=y everywhere) or x-c is in the basis, where c is a constant.

Sometimes even though x is not found in the groebner basis, it is found out that x=0 after solving. To my thinking, a better approach than the groebner basis algorithm for this case would be one which focused on converting multivariate polynomials into univariate polynomials. This probably does not have appeal in general, but I think in this particular case it would be useful.

Now that I have rambled far off course, I should summarize what is really my question:
Given a set of multivariate polynomial equations equal to zero, what are the methods available to find (all or some) real roots of the system?
Post Posted: Sun Mar 18, 2012 3:37 pm


It is currently Fri May 13, 2022 10:56 am
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group