Back to Forum | View unanswered posts | View active topics
Topic review - blowUp2 |
Author |
Message |
|
|
Post subject: |
blowUp2 |
|
|
Can someone help in Computing this example of a blow-up by hand? I want to see exactly how does the blow-up looks at affine chart.
LIB "resolve.lib"; ring r=0,(x,y,z),dp; ideal I=z2-x^3*y^2; ideal C=z,xy; list li=blowUp2(I,C); size(li); // number of charts ==> 2 def S1=li[1]; setring S1; // chart 1 basering; ==> // characteristic : 0 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(3) y(2) ==> // block 2 : ordering C Jnew; ==> Jnew[1]=x(1)*y(2)^2-1 eD; ==> eD[1]=x(3) ==> eD[2]=x(1)*y(2)^2-1 bM; ==> bM[1]=x(1) ==> bM[2]=x(3)*y(2)^3 ==> bM[3]=x(3) def S2=li[2]; setring S2; // chart 2 basering; ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(2) y(1) ==> // block 2 : ordering C Jnew; ==> Jnew[1]=0 eD; ==> eD[1]=x(2)*y(1)^2 bM; ==> bM[1]=y(1)^2 ==> bM[2]=x(2) ==> bM[3]=x(2)*y(1)^3
Can someone help in Computing this example of a blow-up by hand? I want to see exactly how does the blow-up looks at affine chart.
LIB "resolve.lib"; ring r=0,(x,y,z),dp; ideal I=z2-x^3*y^2; ideal C=z,xy; list li=blowUp2(I,C); size(li); // number of charts ==> 2 def S1=li[1]; setring S1; // chart 1 basering; ==> // characteristic : 0 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(3) y(2) ==> // block 2 : ordering C Jnew; ==> Jnew[1]=x(1)*y(2)^2-1 eD; ==> eD[1]=x(3) ==> eD[2]=x(1)*y(2)^2-1 bM; ==> bM[1]=x(1) ==> bM[2]=x(3)*y(2)^3 ==> bM[3]=x(3) def S2=li[2]; setring S2; // chart 2 basering; ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(2) y(1) ==> // block 2 : ordering C Jnew; ==> Jnew[1]=0 eD; ==> eD[1]=x(2)*y(1)^2 bM; ==> bM[1]=y(1)^2 ==> bM[2]=x(2) ==> bM[3]=x(2)*y(1)^3
|
|
|
|
Posted: Tue Mar 10, 2015 3:05 pm |
|
|
|
|
|
It is currently Fri May 13, 2022 10:54 am
|
|