Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Very long computation
PostPosted: Tue Dec 12, 2006 6:13 pm 

Joined: Tue Dec 05, 2006 6:23 pm
Posts: 2
Hi,

I'm trying to make computations with Singular like the following one. They are very very long (after two days I'm still waiting...). Is there something that I can do to speed the computation?

Thanks, Nicola

**********************

ring r = ( 0, p1, p2, x, y ), (u1, u2, u3, u4 ), lp;


// For every generator n/d of your field you construct a polynomial
// n(u1,u2,u3,u4)-n(p1,p2,x,y)/d(p1,p2,x,y)*d(u1,u2,u3,u4). The u1,
// u2,u3,u4 are new variables whereas the p1,p2,x,y are parameters
// (meaning we calculate these polynomials over Q(p1,p2,x,y)[u1,u2,u3,u4].


poly F = (2*u1*u2+u4*u3^3+u4^3*u3)*(u4*u1+u2*u3)-(2*p1*p2+y*x^3+y^3*x)*(y*p1+p2*x) ;


poly G = (u3*u1+u4*u2)*(2*u1*u2+u4*u3^3+u4^3*u3)^2-(x*p1+y*p2)*(2*p1*p2+y*x^3+y^3*x)^2 ;


poly H1 = 1/2*u1^2+1/2*u2^2+1/8*u3^4+3/4*u3^2*u4^2+1/8*u4^4-1/2*p1^2-1/2*p2^2-1/8*x^4-3/4*x^2*y^2-1/8*y^4 ;


poly H2 = (u1*u2+1/2*u3*u4*(u3^2+u4^2))^2-(p1*p2+1/2*x*y*(x^2+y^2))^2 ;


poly FF = 2*(u4*u3^5+4*u4^3*u3^3+2*u1*u2*u3^2+u4^5*u3+2*u1*u2*u4^2)*(2*u1*u2+u4*u3^3+u4^3*u3)-2*(y*x^5+4*y^3*x^3+2*p1*p2*x^2+y^5*x+2*p1*p2*y^2)*(2*p1*p2+y*x^3+y^3*x) ;


ideal H = H1, H2, F, G ;

ideal J = groebner( H );

reduce( FF, J);


Report this post
Top
 Profile  
Reply with quote  
 Post subject: Re: very long computation with parameters
PostPosted: Wed Dec 13, 2006 8:43 pm 

Joined: Wed May 25, 2005 4:16 pm
Posts: 275
It is often faster to avoid parameters:
instead of the ring r=(0,p1, p2, x, y ), (u1, u2, u3, u4 ), lp;
define ring R=0,(u1,u2,u3,u4, p1,p2,x,y),(lp(4),dp);
do your groebner calculation in that ring R and simplify
the result (i.e. remove all but one element with the same leading
monomial w.r.t. u1..u4.

Hans Schoenemann


Report this post
Top
 Profile  
Reply with quote  
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

It is currently Fri May 13, 2022 10:59 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group