Singular
https://www.singular.uni-kl.de/forum/

compute Groebner Basis over Galois Field (2^m)
https://www.singular.uni-kl.de/forum/viewtopic.php?f=10&t=1748
Page 1 of 1

Author:  gepoLV [ Thu Jul 09, 2009 7:46 am ]
Post subject:  compute Groebner Basis over Galois Field (2^m)

Hi, all,
I want to know how to compute Groebner Basis over Galois Field (2^m)?
For example, let m=4, given the irreducible polynomial x^4+x+1, how to generate the finite field?
and when I use command "groebner", whether it will work over GF(2^4)?

thanks.

Author:  bulygin [ Fri Jul 10, 2009 2:39 pm ]
Post subject:  Re: compute Groebner Basis over Galois Field (2^m)

You can specify an extension with a specific minimal polynomial like this:
Code:
ring r=(2,a),x,dp;minpoly=a4+a+1;

In fact in your case you can go with the default declaration
Code:
ring r=(2^4,a),x,dp;

since in this case Singular uses a^4+a+1=0 as a default minimal polynomial.
GB-functionality works in such rings, no problem.
More on declarations of rings you can find at http://www.singular.uni-kl.de/Manual/latest/sing_28.htm#SEC38

Author:  gepo [ Mon Jul 13, 2009 7:07 pm ]
Post subject:  Re: compute Groebner Basis over Galois Field (2^m)

Thank you a lot.

Author:  gepo [ Mon Jul 13, 2009 8:49 pm ]
Post subject:  Re: compute Groebner Basis over Galois Field (2^m)

In the second situation, how can i know the default irreducible polynomial?

Thanks

Author:  greuel [ Fri Jul 24, 2009 1:40 am ]
Post subject:  Re: compute Groebner Basis over Galois Field (2^m)

> ring r=(2^4,a),x,dp;
> minpoly;
1*a^4+1*a^1+1*a^0

Page 1 of 1 All times are UTC + 1 hour [ DST ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/