Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Singular killed on my 4 gig memory laptop
PostPosted: Fri Jun 18, 2010 1:43 am 

Joined: Thu May 13, 2010 5:22 am
Posts: 4
After running about 2 hours on my laptop, the Ubuntu Linux 9.10 system killed my singular job. Can anyone explain why? It was using 7 gigs of memory, but should the job have taken that much?

Here's the singular commands

LIB ("solve.lib");
ring r = 0,(a,b,c,d,e),lp;
setring r;
poly pa = 10a5b2e+10a5c2e-8a4b2de+a4b2e-8a4b2-16a4be-8a4c2de+a4c2e-8a4c2-a3b2de+6a3b2d-8a3b2e-a3b2+12a3bde-2a3be+12a3b-a3c2de+6a3c2d-14a3c2e-a3c2+6a3e+6a2b2de+a2b2d+6a2b2+2a2bde-8a2bd+12a2be+2a2b+10a2c2de+a2c2d-a2c2e+10a2c2-4a2de+a2e-4a2-4ab2d-8abde-2abd-8ab+ac2de-6ac2d+4ac2e+ac2-ade+2ad-4ae-a+4bd-2c2de-c2d-2c2+2de+d+2;
poly pb = 10a2b7d2-18a2b6d2e+a2b6d2-18a2b6d-10a2b5c2d2e2+30a2b5c2d2-10a2b5c2+8a2b5d2e2-2a2b5d2e-6a2b5d2+32a2b5de-2a2b5d+8a2b5-a2b4c2d2e2-36a2b4c2d2e+3a2b4c2d2+18a2b4c2de2-36a2b4c2d+18a2b4c2e-a2b4c2+a2b4d2e2+10a2b4d2e-14a2b4de2+4a2b4de+10a2b4d-14a2b4e+a2b4-20a2b3c4d2e2+30a2b3c4d2+10a2b3c4e2-20a2b3c4+20a2b3c2d2e2-4a2b3c2d2e-12a2b3c2d2+2a2b3c2de2+32a2b3c2de-4a2b3c2d-16a2b3c2e2+2a2b3c2e+20a2b3c2-4a2b3d2e2-2a2b3de2-16a2b3de+6a2b3e2-2a2b3e-4a2b3-2a2b2c4d2e2-18a2b2c4d2e+3a2b2c4d2+18a2b2c4de2-18a2b2c4d+a2b2c4e2+18a2b2c4e-2a2b2c4+2a2b2c2d2e2+12a2b2c2d2e-20a2b2c2de2+4a2b2c2de+12a2b2c2d-2a2b2c2e2-20a2b2c2e+2a2b2c2+6a2b2de2+a2b2e2+6a2b2e-10a2bc6d2e2+10a2bc6d2+10a2bc6e2-10a2bc6+12a2bc4d2e2-2a2bc4d2e-6a2bc4d2+2a2bc4de2-2a2bc4d-18a2bc4e2+2a2bc4e+12a2bc4-4a2bc2d2e2-2a2bc2de2-8a2bc2de+10a2bc2e2-2a2bc2e-4a2bc2-2a2be2-a2c6d2e2+a2c6d2+a2c6e2-a2c6+a2c4d2e2+2a2c4d2e-2a2c4de2+2a2c4d-2a2c4e2-2a2c4e+a2c4+2a2c2de2+a2c2e2+2a2c2e-18ab6d2+32ab5d2e-2ab5d2+32ab5d+18ab4c2d2e2-36ab4c2d2+18ab4c2-14ab4d2e2+4ab4d2e+10ab4d2-56ab4de+4ab4d-14ab4+2ab3c2d2e2+32ab3c2d2e-4ab3c2d2-32ab3c2de2+32ab3c2d-32ab3c2e+2ab3c2-2ab3d2e2-16ab3d2e+24ab3de2-8ab3de-16ab3d+24ab3e-2ab3+18ab2c4d2e2-18ab2c4d2-18ab2c4e2+18ab2c4-20ab2c2d2e2+4ab2c2d2e+12ab2c2d2-4ab2c2de2+4ab2c2d+28ab2c2e2-4ab2c2e-20ab2c2+6ab2d2e2+4ab2de2+24ab2de-10ab2e2+4ab2e+6ab2+2abc4d2e2-2abc4d2-2abc4e2+2abc4-2abc2d2e2-8abc2d2e+8abc2de2-8abc2d+4abc2e2+8abc2e-2abc2-8abde2-2abe2-8abe-2ac4d2e2+2ac4d2+2ac4e2-2ac4+2ac2d2e2-4ac2e2+2ac2+2ae2-10b5c2d2+8b5d2+18b4c2d2e-b4c2d2+18b4c2d-14b4d2e+b4d2-14b4d+10b3c4d2e2-20b3c4d2+10b3c4-16b3c2d2e2+2b3c2d2e+20b3c2d2-32b3c2de+2b3c2d-16b3c2+6b3d2e2-2b3d2e-4b3d2+24b3de-2b3d+6b3+b2c4d2e2+18b2c4d2e-2b2c4d2-18b2c4de2+18b2c4d-18b2c4e+b2c4-2b2c2d2e2-20b2c2d2e+2b2c2d2+28b2c2de2-4b2c2de-20b2c2d+28b2c2e-2b2c2+b2d2e2+6b2d2e-10b2de2+4b2de+6b2d-10b2e+b2+10bc6d2e2-10bc6d2-10bc6e2+10bc6-18bc4d2e2+2bc4d2e+12bc4d2-2bc4de2+2bc4d+24bc4e2-2bc4e-18bc4+10bc2d2e2-2bc2d2e-4bc2d2+4bc2de2+8bc2de-2bc2d-18bc2e2+4bc2e+10bc2-2bd2e2-2bde2-8bde+4be2-2be-2b+c6d2e2-c6d2-c6e2+c6-2c4d2e2-2c4d2e+c4d2+2c4de2-2c4d+3c4e2+2c4e-2c4+c2d2e2+2c2d2e-4c2de2+2c2d-3c2e2-4c2e+c2+2de2+e2+2e;
poly pc = 10a2b8c2d2-a2b8d2-18a2b7c2d2e+a2b7c2d2-18a2b7c2d+2a2b7d2e+2a2b7d-10a2b6c4d2e2+30a2b6c4d2-10a2b6c4+11a2b6c2d2e2-2a2b6c2d2e-17a2b6c2d2+32a2b6c2de-2a2b6c2d+11a2b6c2-a2b6d2e2+a2b6d2-4a2b6de-a2b6-a2b5c4d2e2-36a2b5c4d2e+3a2b5c4d2+18a2b5c4de2-36a2b5c4d+18a2b5c4e-a2b5c4+a2b5c2d2e2+26a2b5c2d2e-20a2b5c2de2+4a2b5c2de+26a2b5c2d-20a2b5c2e+a2b5c2-2a2b5d2e+2a2b5de2-2a2b5d+2a2b5e-20a2b4c6d2e2+30a2b4c6d2+10a2b4c6e2-20a2b4c6+34a2b4c4d2e2-4a2b4c4d2e-39a2b4c4d2+2a2b4c4de2+32a2b4c4de-4a2b4c4d-21a2b4c4e2+2a2b4c4e+34a2b4c4-15a2b4c2d2e2+9a2b4c2d2-2a2b4c2de2-36a2b4c2de+12a2b4c2e2-2a2b4c2e-15a2b4c2+a2b4d2e2+4a2b4de-a2b4e2+a2b4-2a2b3c6d2e2-18a2b3c6d2e+3a2b3c6d2+18a2b3c6de2-18a2b3c6d+a2b3c6e2+18a2b3c6e-2a2b3c6+2a2b3c4d2e2+38a2b3c4d2e-38a2b3c4de2+4a2b3c4de+38a2b3c4d-2a2b3c4e2-38a2b3c4e+2a2b3c4-12a2b3c2d2e+22a2b3c2de2-12a2b3c2d+a2b3c2e2+22a2b3c2e-2a2b3de2-2a2b3e-10a2b2c8d2e2+10a2b2c8d2+10a2b2c8e2-10a2b2c8+31a2b2c6d2e2-2a2b2c6d2e-31a2b2c6d2+2a2b2c6de2-2a2b2c6d-31a2b2c6e2+2a2b2c6e+31a2b2c6-27a2b2c4d2e2+15a2b2c4d2-2a2b2c4de2-24a2b2c4de+33a2b2c4e2-2a2b2c4e-27a2b2c4+6a2b2c2d2e2+12a2b2c2de-13a2b2c2e2+6a2b2c2+a2b2e2-a2bc8d2e2+a2bc8d2+a2bc8e2-a2bc8+a2bc6d2e2+14a2bc6d2e-14a2bc6de2+14a2bc6d-2a2bc6e2-14a2bc6e+a2bc6-10a2bc4d2e+20a2bc4de2-10a2bc4d+a2bc4e2+20a2bc4e-6a2bc2de2-6a2bc2e+8a2c8d2e2-8a2c8d2-8a2c8e2+8a2c8-13a2c6d2e2+7a2c6d2+19a2c6e2-13a2c6+5a2c4d2e2-14a2c4e2+5a2c4+3a2c2e2-18ab7c2d2+2ab7d2+32ab6c2d2e-2ab6c2d2+32ab6c2d-4ab6d2e-4ab6d+18ab5c4d2e2-36ab5c4d2+18ab5c4-20ab5c2d2e2+4ab5c2d2e+26ab5c2d2-56ab5c2de+4ab5c2d-20ab5c2+2ab5d2e2-2ab5d2+8ab5de+2ab5+2ab4c4d2e2+32ab4c4d2e-4ab4c4d2-32ab4c4de2+32ab4c4d-32ab4c4e+2ab4c4-2ab4c2d2e2-36ab4c2d2e+36ab4c2de2-8ab4c2de-36ab4c2d+36ab4c2e-2ab4c2+4ab4d2e-4ab4de2+4ab4d-4ab4e+18ab3c6d2e2-18ab3c6d2-18ab3c6e2+18ab3c6-38ab3c4d2e2+4ab3c4d2e+38ab3c4d2-4ab3c4de2+4ab3c4d+38ab3c4e2-4ab3c4e-38ab3c4+22ab3c2d2e2-12ab3c2d2+4ab3c2de2+40ab3c2de-22ab3c2e2+4ab3c2e+22ab3c2-2ab3d2e2-8ab3de+2ab3e2-2ab3+2ab2c6d2e2-2ab2c6d2-2ab2c6e2+2ab2c6-2ab2c4d2e2-24ab2c4d2e+24ab2c4de2-24ab2c4d+4ab2c4e2+24ab2c4e-2ab2c4+12ab2c2d2e-28ab2c2de2+12ab2c2d-2ab2c2e2-28ab2c2e+4ab2de2+4ab2e-14abc6d2e2+14abc6d2+14abc6e2-14abc6+20abc4d2e2-10abc4d2-30abc4e2+20abc4-6abc2d2e2+18abc2e2-6abc2-2abe2-10b6c4d2+11b6c2d2-b6d2+18b5c4d2e-b5c4d2+18b5c4d-20b5c2d2e+b5c2d2-20b5c2d+2b5d2e+2b5d+10b4c6d2e2-20b4c6d2+10b4c6-21b4c4d2e2+2b4c4d2e+34b4c4d2-32b4c4de+2b4c4d-21b4c4+12b4c2d2e2-2b4c2d2e-15b4c2d2+36b4c2de-2b4c2d+12b4c2-b4d2e2+b4d2-4b4de-b4+b3c6d2e2+18b3c6d2e-2b3c6d2-18b3c6de2+18b3c6d-18b3c6e+b3c6-2b3c4d2e2-38b3c4d2e+2b3c4d2+38b3c4de2-4b3c4de-38b3c4d+38b3c4e-2b3c4+b3c2d2e2+22b3c2d2e-22b3c2de2+4b3c2de+22b3c2d-22b3c2e+b3c2-2b3d2e+2b3de2-2b3d+2b3e+10b2c8d2e2-10b2c8d2-10b2c8e2+10b2c8-31b2c6d2e2+2b2c6d2e+31b2c6d2-2b2c6de2+2b2c6d+31b2c6e2-2b2c6e-31b2c6+33b2c4d2e2-2b2c4d2e-27b2c4d2+4b2c4de2+24b2c4de-2b2c4d-33b2c4e2+4b2c4e+33b2c4-13b2c2d2e2+6b2c2d2-2b2c2de2-28b2c2de+13b2c2e2-2b2c2e-13b2c2+b2d2e2+4b2de-b2e2+b2+bc8d2e2-bc8d2-bc8e2+bc8-2bc6d2e2-14bc6d2e+bc6d2+14bc6de2-14bc6d+3bc6e2+14bc6e-2bc6+bc4d2e2+20bc4d2e-30bc4de2+20bc4d-3bc4e2-30bc4e+bc4-6bc2d2e+18bc2de2-6bc2d+bc2e2+18bc2e-2bde2-2be-8c8d2e2+8c8d2+8c8e2-8c8+19c6d2e2-13c6d2-25c6e2+19c6-14c4d2e2+5c4d2+27c4e2-14c4+3c2d2e2-11c2e2+3c2+e2;
poly pd = 8ab2d4e+ab2d3e-6ab2d3-6ab2d2e-ab2d2+4ab2d-12abd3e-2abd2e+8abd2+8abde+2abd-4ab+8ac2d4e+ac2d3e-6ac2d3-10ac2d2e-ac2d2-ac2de+6ac2d+2ac2e+ac2+4ad2e+ade-2ad-2ae-a-10b2d5e-b2d4e+8b2d4+8b2d3e+b2d3-6b2d2+16bd4e+2bd3e-12bd3-12bd2e-2bd2+8bd-10c2d5e-c2d4e+8c2d4+14c2d3e+c2d3+c2d2e-10c2d2-4c2de-c2d+2c2-6d3e-d2e+4d2+4de+d-2;
poly pe = 6ab2de3+ab2de2-4ab2de-4ab2e2-ab2e+2ab2-16abde4-2abde3+12abde2+12abe3+2abe2-8abe-10ac2de5-ac2de4+14ac2de3+ac2de2-4ac2de+8ac2e4+ac2e3-10ac2e2-ac2e+2ac2+10ade5+ade4-8ade3-8ae4-ae3+6ae2-4b2de2-b2de+2b2d+2b2e+b2+12bde3+2bde2-8bde-8be2-2be+4b+8c2de4+c2de3-10c2de2-c2de+2c2d-6c2e3-c2e2+6c2e+c2-8de4-de3+6de2+6e3+e2-4e;
ideal i = pa,pb,pc,pd,pe;
ideal si = std(i);


Report this post
Top
 Profile  
Reply with quote  
 Post subject: Re: Singular killed on my 4 gig memory laptop
PostPosted: Fri Jun 18, 2010 4:28 pm 

Joined: Wed Mar 03, 2010 5:08 pm
Posts: 108
Location: Germany, Münster
For the kernel-develelopper it maybe interesting to see the last message that Singular report. Did it?

What you are doing here is to compute a Groebner basis w.r.t. to lexicographical ordering lp.
In general, this is the most expensive ordering, and the coefficients in charactristic 0 may be very huge.
Hence it is not unlikely that you run out of memory by the calculation with your (large) input polynomials.

So, if Singular allocated 4 GB RAM is not a bad news, but good news.
Normally, the Singular and the system should go in with swapping to the harddisk,
but this can become so massive that the computer gets blocked for other input.

On a SPARC SUN I did once such a huge std calculation that the performance meter
only display gravestones.
(So to say, an easteregg http://en.wikipedia.org/wiki/Easter_egg_(media) from the SUN developper)

Back to your mathematical problem:
If you are not obliged to have the lexicographical std-basis, then calculate a std-basis
w.r.t. another faster ordering., usually choose the (weighted) degree ordering dp.

To see whether the std-calculation will go through, proceed as follows.
First enable option(prot); and do the calculation in prime characteristic
where it can be done successfully within some minutes
You will the following pattern (extract) about the progress of the computation.

(You may also set option(mem); to see how much memory space will be allocated.)

Code:
> option(prot);
> ring rdp32003 = 32003,(a,b,c,d,e),dp;
// your input here

> ideal i = pa,pb,pc,pd,pe;
> ideal si = std(i);
[4095:2]8(4)s(3)s9s12(4)s13s(6)s14s(7)s15(8)s(11)s(13)s16(15)s(17)s(18)s(20)--
ss(21)s(27)s17(28)s(31)s(33)s(35)s(38)--ss(42)s(43)s(44)s18(46)--

(969)s(971)s(974)s(977)s38(978)s(982)s(986)s(990)s(994)s(998)s(997)s-
s(993)--------s(989)--------------------------------------------------s(942)--s(940)--s(942)--s(938)s-
s(941)s(942)--s(940)s(943)s(946)s(949)s39(951)s(952)-s(955)s(959)----

s(25)-s(27)------s(24)-s(25)61----------s(18)62----s(17)------63---s(11)-s(13)---64---s(9)-s(11)--65----
s(8)--66---s(6)-67---s(5)68---s69---s70---s71---s72---s73---s74--s(6)-75---s(4)76---77-
product criterion:449 chain criterion:466165
> dim(si);
2
> variables(si);
_[1]=a
_[2]=b
_[3]=c
_[4]=d
_[5]=e


Remark.: In case that the ideal is zero-dimensional, (but your's isn't it) the lp std-basis
could be calculated from the dp-std-basis by the fglm command.

Maybe, as you intend to use the solve.lib, the information I gave here is already helpful for you.
The zeroset of the ideal does not have only isolated solutions. So you can not solve it numerically.
(You had to compute the primary decomposition first, primdec.lib but the computation will not be
easier.)

Now redo the same computation in characteristic 0.
The coefficients of the std-basis may now explode and the procress will be slow
but in any case the computation will show the same pattern as above,
and you know at which stage the calculation is. You may then decide to
interrupt the the calculation.

(In my computations I spoke about above,
I had a succesful std-calculation, taking approx. one day, resulting in
univariate polynomial of degree 252 where each coefficient
more than 30000 digits, and finally ... Singular could factorize the polynomial.)

Code:
> option(prot);
> ring rdp0 = 0,(a,b,c,d,e),dp;
// your input here

> ideal i = pa,pb,pc,pd,pe;
> ideal si = std(i);


You may also change the order of the variables e.g. (e,d,c,b,a) which will change
the computation and the protocol reported by prot.

As a last remark, try to simplify the input at some earlier stage.

Ch Gorzel


Report this post
Top
 Profile  
Reply with quote  
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

It is currently Fri May 13, 2022 11:06 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group