
The Singular 'Resolution of Singularities'

Pa
kage:

Getting started

Anne Fr�uhbis-Kr�uger

FB Mathematik

Universit�at Kaiserslautern,

67653 Kaiserslautern, Germany

July 1, 2005

1 Installation

If Singular is not installed on your (UNIX-type) 
omputer, ask your system

administrator to download and install it (version � 2.0.6) on your 
omputer.

Also ask for the installation of the additional pa
kages surf and graphviz whi
h

are used for produ
ing graphi
al output, but are not part of the Singular

distribution. If all this is already installed on your 
omputer, you are ready to

start.

2 Working with the 'resol.lib' Pa
kage

2.1 First Steps

The �rst step is starting Singular for intera
tive use by spe
ifying the 
om-

mand Singular at the system prompt of the 
omputer. Singular then starts

with a message like

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 2-0-6

0<

by: G.-M. Greuel, G. Pfister, H. S
hoenemann \ De
ember 2004

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

where, of 
ourse, the version number and month and year might be di�erent.

On the next line the system then awaits input; to indi
ate this, the 
hara
ter

> is displayed at the beginning of the line.

Before we 
an start using the resolution of singularities pa
kage, we need to

load it:

1



LIB"resolve.lib"; // load the resolution algorithm

LIB"reszeta.lib"; // load its appli
ation algorithms

LIB"resgraph.lib"; // load the graphi
al output routines

Here the 
ontent of the line following the 
hara
ters '//' is a 
omment. It 
an

be omitted from the input; it is only spe
i�ed here to explain the 
orresponding

line to the reader.

Now, we are ready to use the resolution pa
kage. Currently, the obje
t to be

resolved 
an only be spe
i�ed by means of an ideal 
ontained in an aÆne 
hart.

Let us illustrate this using the A

6

-singularity as an example:

ring R=0,(x,y,z),dp; // define the ring Q[x,y,z℄

ideal I=x7+y2-z2; // an A6 surfa
e singularity

To a
tually 
ompute a resolution of singularities, we use the 
ommand

resolve:

list L=resolve(I); // 
ompute the resolution

Sin
e 
omputation of the resolution might take quite some time, there is the

possibility to view some debug output during the resolution by spe
ifying an

additional se
ond parameter '1':

list L=resolve(I,1); // 
ompute the resolution in debug mode

At the same time this debug mode will perform additional sanity 
he
ks whi
h

only serve debug purposes and might slow down the algorithm. (In future

releases, there will be a swit
h to only produ
e output without running in debug-

mode.) If the user would like to stop at ea
h blow-up step, the optional se
ond

argument may be set to '32'. In both 
ases, the debug output will be of the

following form (the text after the '//' is just a 
omment whi
h does not appear

in the output):

.

.

.

++++++++++++++ BO +++++++++++++++++++++++

3 //

9 // debugging information: progress

8 //

+++++++++++++++++++++++++++++++++++++++++++++++

==== W:

_[1℄=0 // ideal of ambient spa
e

==== J:

_[1℄=x(3)*y(1)^2-x(3)-y(2) // ideal of stri
t transform

==== E:

[1℄:

2



_[1℄=1 // stri
t transform of first ex
. div.

[2℄:

_[1℄=1 // stri
t transform of se
ond one

[3℄:

_[1℄=y(2) // stri
t transform of third one

[4℄:

_[1℄=x(3) // newborn ex
eptional divisor

==== Interse
tion

0,1,0,0, // debugging information

0,0,1,0,

0,0,0,1,

0,0,0,0

------- Center ------------

_[1℄=y(2) // 
enter for up
oming blow-up

_[2℄=x(3) //

----------------------------

.

.

.

When 
onsidering this output, it is important to observe that information is

printed out for ea
h 
hart o

urring in the resolution pro
ess. In parti
ular,

not all ex
eptional divisors are, in general, present in a given 
hart; e.g. the

ex
eptional divisors one and two in the above example did appear in an an
estor

of the 
urrent 
hart, but they do not meet the 
urrent one. It may also o

ur

that the total number of ex
eptional divisors arising in the whole resolution

pro
ess is higher than the highest number of ex
eptional divisors in any of the


harts.

As soon as the system �nished 
omputing the tree of 
harts of the resolution

pro
ess, we 
an start identifying the ex
eptional divisors in the various 
harts:

list 
oll=
olle
tDiv(L); // identify the divisors


oll; // show the output

[1℄:

0,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,2,0,0,0,

0,2,0,0,0,

0,2,3,0,0,

0,0,3,0,0,

0,0,3,4,0,

0,0,3,4,0,

0,0,0,4,5,

0,0,3,0,5,

0,0,0,4,5,

3



0,0,3,0,5

[2℄:

[1℄:

[1℄:

2,1

[2℄:

3,1

[3℄:

4,1

.

.

.

The output of this 
ommand is a list, whose �rst entry is a matrix with integer

entries. The entry k in the i-th row and j-th 
olumn of this matrix identi�es the

j-th divisor (if it is visible in the 
hart) in the history of the i-th 
hart as the

exe
eptional divisor numbered by k. The other output data is explained in the

online-help for the 
ommand.

We 
an also draw the tree of 
harts:

ResTree(L,
oll[1℄); // draw tree of 
harts

In a di�erent window, the image 1 is produ
ed:

Figure 1: Tree of 
harts of the resolution of an A

6

surfa
e singularity as 
om-

puted by the implemented algorithm. Ea
h of the boxes represents one 
hart,

the list 'E' spe
i�es the ex
eptional divisors visible in this 
hart in the order in

whi
h they arose. The lines 
onne
ting the boxes represent a blow-up linking

the 
hart 
ontaining the 
enter to the new 
harts, the number 'd' spe
i�es the

dimension of the 
enter of this blow-up.

4



2.2 A

essing the Resolution Data

The list whi
h is returned by the 
ommand resolve 
ontains all 
harts whi
h

were 
reated during the resolution pro
ess. These 
harts 
an be a

essed in the

following way:

def Chart8=L[2℄[8℄; // assign name Chart8 to the 8th 
hart

setring Chart8; // a

ess Chart8

BO; // look at the obje
t in detail

The last 
ommand produ
es the following output:

[1℄:

_[1℄=0 // ideal of the ambient spa
e

[2℄:

_[1℄=x(3)*y(1)^2-x(3)-y(2) // ideal of the stri
t transform

[3℄:

1,1 // internal data

[4℄:

[1℄:

_[1℄=1 // stri
t transform of 1st ex
. div.

[2℄:

_[1℄=1 // stri
t transform of 2nd one

[3℄:

_[1℄=y(2) // stri
t transform of 3rd one

[4℄:

_[1℄=x(3) // newborn ex
eptional divisor

[5℄: // ideal des
ribing sequen
e of blow-ups

_[1℄=x(3)*y(2) // image of 1st variable of orig. 
hart

_[2℄=x(3)^4*y(2)^3 // image of 2nd variable of orig. 
hart

_[3℄=x(3)^4*y(1)*y(2)^3 // image of 3rd variable of orig. 
hart

[6℄:

1,1,0,0 // internal data

[7℄:

3,-1 // internal data

[8℄: // internal data

_[1,1℄=0

_[1,2℄=1

_[1,3℄=0

_[1,4℄=0

5



_[2,1℄=0

_[2,2℄=0

_[2,3℄=1

_[2,4℄=0

_[3,1℄=0

_[3,2℄=0

_[3,3℄=0

_[3,4℄=1

_[4,1℄=0

_[4,2℄=0

_[4,3℄=0

_[4,4℄=0

[9℄: // internal data

1,1

Additionally there is some more information en
oded in this 
hart. The ideal

lastMap spe
i�es the images of the variables of the parent 
hart under the last

blow-up; the ideal 
ent des
ribes the 
enter of the up
oming blow-up. The

matrix path en
odes the history of the resolution pro
ess leading to this 
hart:

0, 1,3,5,7,

-1,2,2,2,1

The last 
olumn spe
i�es that this 
hart is the �rst one of the blow-up of 
hart

7 in the 
enter spe
i�ed there; 
hart 7 in turn arose as the se
ond 
hart from

the blow-up of 
hart 5 a

ording to the se
ond 
olumn from the right. The �rst


olumn is only there for te
hni
al reasons, it does not have any meaning.

3 Working with the Appli
ations Pa
kage 'zeta.lib'

Currently, all appli
ations are only available for surfa
e singularities:

As a �rst appli
ation, we 
an 
ompute the interse
tion matrix and genus of the

ex
eptional 
urves on the blown-up surfa
e:

list iD=interse
tionDiv(L); // 
ompute interse
tion properties

iD; // show the output

The output of this 
ommand is a list whose �rst entry 
ontains the interse
tion

matrix of the ex
eptional divisors (ea
h being a C {irredu
ible 
urve) and the

se
ond entry is the list of genera of these divisors. The third and fourth entry

help identifying the 
orresponding divisors in the respe
tive 
harts:

[1℄:

-2,0,1,0,0,0, // interse
tion matrix

0,-2,0,1,0,0,

1,0,-2,0,1,0,

6



0,1,0,-2,0,1,

0,0,1,0,-2,1,

0,0,0,1,1,-2

[2℄:

0,0,0,0,0,0 // genera

[3℄:

[1℄: // first ex
eptional divisor

[1℄: // 
an be found in

2,1,1 // 
hart 2: BO[4℄[1℄, first 
omponent

[2℄:

4,1,1 // 
hart 4: BO[4℄[1℄, first 
omponent

[2℄: // se
ond ex
eptional divisor

[1℄: // 
an be found in

2,1,2 // 
hart 2: BO[4℄[1℄, se
ond 
omponent

[2℄:

4,1,2 // 
hart 4: BO[4℄[1℄, se
ond 
omponent

[3℄: // third ex
eptional divisor

[1℄: // ...

4,2,1

[2℄:

6,2,1

[4℄:

[1℄:

4,2,2

[2℄:

6,2,2

[5℄:

[1℄:

6,3,1

[2℄:

7,3,1

[6℄:

[1℄:

6,3,2

[2℄:

7,3,2

[4℄:

1,1,1,1,1,1 // number of C-
omponents of ea
h

// Q-
omponent listed in entry [3℄

// (C 
omplex numbers, Q rationals)

Given these data we are able to display the dual graph of the resolution:

InterDiv(iD[1℄); // draw dual graph of resolution

7



Caution! This feature is still in its testing phase. It might still undergo signi�-


ant 
hanges!

For people who would like to see ni
e pi
tures, we 
an also draw the �nal


harts:

finalCharts(L,iD,abstra
tR(L)[1℄); // draw pi
tures of the final 
harts

The graphi
al output is not always absolutely 
orre
t due to the fa
t that the im-

ages are produ
ed by means of a ray-tra
er whi
h prepares the images symboli
-

numeri
ally.

As a last set of appli
ations, we 
an 
ompute the negative spe
tral numbers

and the (lo
al and global) Denef-Loeser zeta fun
tion for the given singularity:

spe
tralNeg(L); // negative spe
tral numbers

zetaDL(L,1); // global zeta fun
tion for d=1

zetaDL(L,2); // global zeta fun
tion for d=2

zetaDL(L,1,"lo
al"); // lo
al zeta fun
tion for d=1

Of 
ourse, there are no negative spe
tral numbers in this very simple example.

The global and lo
al zeta fun
tion (type of return value: string) 
oin
ide for

isolated singularities. But this is only a syntax example anyway.

8


