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1 Installation

If SINGULAR is not installed on your (UNIX-type) computer, ask your system
administrator to download and install it (version > 2.0.6) on your computer.
Also ask for the installation of the additional packages surf and graphviz which
are used for producing graphical output, but are not part of the SINGULAR
distribution. If all this is already installed on your computer, you are ready to
start.

2 Working with the 'resol.1ib’ Package

2.1 First Steps

The first step is starting SINGULAR for interactive use by specifying the com-
mand Singular at the system prompt of the computer. SINGULAR then starts
with a message like

SINGULAR /
A Computer Algebra System for Polynomial Computations /  version 2-0-6
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ December 2004

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

where, of course, the version number and month and year might be different.
On the next line the system then awaits input; to indicate this, the character
> is displayed at the beginning of the line.

Before we can start using the resolution of singularities package, we need to
load it:



LIB"resolve.lib"; // load the resolution algorithm
LIB"reszeta.lib"; // load its application algorithms
LIB"resgraph.1lib"; // load the graphical output routines

Here the content of the line following the characters ’//’ is a comment. It can
be omitted from the input; it is only specified here to explain the corresponding
line to the reader.

Now, we are ready to use the resolution package. Currently, the object to be
resolved can only be specified by means of an ideal contained in an affine chart.
Let us illustrate this using the Ag-singularity as an example:

ring R=0, (x,y,2),dp; // define the ring Q[x,y,z]
ideal I=xT7+y2-z2; // an A6 surface singularity

To actually compute a resolution of singularities, we use the command
resolve:

list L=resolve(I); // compute the resolution

Since computation of the resolution might take quite some time, there is the
possibility to view some debug output during the resolution by specifying an
additional second parameter 1’

list L=resolve(I,1); // compute the resolution in debug mode

At the same time this debug mode will perform additional sanity checks which
only serve debug purposes and might slow down the algorithm. (In future
releases, there will be a switch to only produce output without running in debug-
mode.) If the user would like to stop at each blow-up step, the optional second
argument may be set to '32’. In both cases, the debug output will be of the
following form (the text after the ’//’ is just a comment which does not appear
in the output):

o BO B

3 //

9 // debugging information: progress
8 //

s o o T
_[1]1=0 // ideal of ambient space

_[11=x(3)*y(1)"2-x(3)-y(2) // ideal of strict transform



_[1]1=1
[2]:

_[11=1
[3]:

_[11=y(2)
[4]:

_[11=x(3)

==== Intersection
0,1,0,0,
0,0,1,0,
0,0,0,1,
0,0,0,0

s s

——————— Center -—-----

_[11=y(2)
_[21=x(3)

// strict transform of first exc. div.
// strict transform of second one
// strict transform of third one

// newborn exceptional divisor

// debugging information

// center for upcoming blow-up

//

When considering this output, it is important to observe that information is
printed out for each chart occurring in the resolution process. In particular,
not all exceptional divisors are, in general, present in a given chart; e.g. the
exceptional divisors one and two in the above example did appear in an ancestor
of the current chart, but they do not meet the current one. It may also occur
that the total number of exceptional divisors arising in the whole resolution
process is higher than the highest number of exceptional divisors in any of the

charts.

As soon as the system finished computing the tree of charts of the resolution
process, we can start identifying the exceptional divisors in the various charts:

list coll=collectDiv(L);

coll;
[1]:
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// identify the divisors
// show the output



The output of this command is a list, whose first entry is a matrix with integer
entries. The entry k in the i-th row and j-th column of this matrix identifies the
j-th divisor (if it is visible in the chart) in the history of the i-th chart as the
execeptional divisor numbered by k. The other output data is explained in the
online-help for the command.

We can also draw the tree of charts:

ResTree(L,coll[1]); // draw tree of charts

In a different window, the image 1 is produced:

chart 12
E:4.5

chart 13
E:3.5

chart 10
E:4.5

chart 11
E:3.5

Figure 1: Tree of charts of the resolution of an Ag surface singularity as com-
puted by the implemented algorithm. Each of the boxes represents one chart,
the list ’E’ specifies the exceptional divisors visible in this chart in the order in
which they arose. The lines connecting the boxes represent a blow-up linking
the chart containing the center to the new charts, the number ’d’ specifies the
dimension of the center of this blow-up.



2.2 Accessing the Resolution Data

The list which is returned by the command resolve contains all charts which
were created during the resolution process. These charts can be accessed in the
following way:

def Chart8=L[2][8];
setring Chart8;

BO;

//
//
//

assign name Chart8 to the 8th chart
access Chart8
look at the object in detail

The last command produces the following output:

[1]:

_[11=0

[2]:

_[11=x(3)*y (1) "2-x(3)-y(2)

[3]:

1,1

[4]:

[1]:
_[1]1=1
[2]:
_[11=1
[31:
_[11=y(2)
[4]:
_[11=x(3)

[5]:

_[11=x(3) ¥y (2)
_[2]=x(3)"4*y(2)"3
_[81=x(3) ~4+y (1) %y (2) "3

[6]:

1,1,0,0

3,-1

[8]:

_[1,1]1=0
_[1,2]=1
_[1,3]1=0
_[1,4]1=0

//

//

//

//
//
//
//
//
//

//
//

//

//

//

ideal of the ambient space

ideal of the strict transform

internal data

strict transform of 1st exc. div.
strict transform of 2nd one

strict transform of 3rd one

newborn exceptional divisor

ideal describing sequence of blow-ups
image of 1st variable of orig. chart

image of 2nd variable of orig. chart
image of 3rd variable of orig. chart

internal data

internal data

internal data



_[2,11=0
_[2,21=0
_[2,3]=1
_[2,4]1=0
_[3,11=0
_[3,21=0
_[3,31=0
_[3,4]1=1
_[4,11=0
_[4,2]1=0
_[4,31=0
_[4,41=0

[9]: // internal data
1,1

Additionally there is some more information encoded in this chart. The ideal
lastMap specifies the images of the variables of the parent chart under the last
blow-up; the ideal cent describes the center of the upcoming blow-up. The
matrix path encodes the history of the resolution process leading to this chart:

The last column specifies that this chart is the first one of the blow-up of chart
7 in the center specified there; chart 7 in turn arose as the second chart from
the blow-up of chart 5 according to the second column from the right. The first
column is only there for technical reasons, it does not have any meaning.

3 Working with the Applications Package 'zeta.1ib’

Currently, all applications are only available for surface singularities:
As a first application, we can compute the intersection matrix and genus of the
exceptional curves on the blown-up surface:

list iD=intersectionDiv(L); // compute intersection properties
iD; // show the output

The output of this command is a list whose first entry contains the intersection
matrix of the exceptional divisors (each being a C-irreducible curve) and the
second entry is the list of genera of these divisors. The third and fourth entry
help identifying the corresponding divisors in the respective charts:

[1]:

_29091909090, // intersection matrix
09_2909190909
1,0,-2,0,1,0,



6,3,1
[2]:
7,3,1
[6]:
[1]:
6,3,2
[2]:
7,3,2
[4]:
1,1,1,1,1,1

//

//
//
//

//
//
//
//

//
//

genera

first exceptional divisor
can be found in
chart 2: BO[4][1], first component

chart 4: BO[4][1], first component
second exceptional divisor

can be found in

chart 2: BO[4][1], second component

chart 4: BO[4][1], second component
third exceptional divisor

/...

//
//
//

number of C-components of each
Q-component listed in entry [3]
(C complex numbers, Q rationals)

Given these data we are able to display the dual graph of the resolution:

InterDiv(iD[1]);

//

draw dual graph of resolution



Caution! This feature is still in its testing phase. It might still undergo signifi-
cant changes!

For people who would like to see nice pictures, we can also draw the final
charts:

finalCharts(L,iD,abstractR(L) [1]); // draw pictures of the final charts

The graphical output is not always absolutely correct due to the fact that the im-
ages are produced by means of a ray-tracer which prepares the images symbolic-
numerically.

As a last set of applications, we can compute the negative spectral numbers
and the (local and global) Denef-Loeser zeta function for the given singularity:

spectralNeg(L) ; // negative spectral numbers

zetaDL(L,1); // global zeta function for d=1
zetaDL(L,2); // global zeta function for d=2
zetaDL(L,1,"local"); // local zeta function for d=1

Of course, there are no negative spectral numbers in this very simple example.
The global and local zeta function (type of return value: string) coincide for
isolated singularities. But this is only a syntax example anyway.



