Next: About this document ...
Up: Standard bases, syzygies and
Previous: 6. The Weyl algebra
- AK
- Altmann, A.; Kleiman, S.: Introduction to Grothendieck
Duality Theory. Lect. Notes in Math. 146, Springer 1970.
- AMR
- Alonso, M.E.; Mora, T.; Raimondo, M.: Local decomposition
algorithms. In: Proc. AAECC Tokyo 1990, Lect. Notes Comp. Sci.
508 208 - 221 (1991).
- Ba
- Bayer, D.: The division algorithm and the Hilbert scheme.
Thesis, Harvard Univ. 1982.
- BS
- Bayer, D.; Stillman, M.: Macaulay (Version 3.0). A
computer algebra system for algebraic geometry.
- BW
- Becker, T.; Weispfenning, V.: Gröbner Bases. A
computational approach to commutative algebra. Springer-Verlag GTM 141 (1991).
- B1
- Buchberger, B.: Ein Algorithmus zum Auffinden der
Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal.
Thesis, Univ. Innsbruck, 1965.
- B2
- Buchberger, B.: Gröbner bases: an algorithmic method in
polynomial ideal theory, in N.K Bose (ed.) Recent trends in multidimensional
system theory, Reidel (1985).
- E
- Eisenbud, D.: Commutative Algebra with a view toward Algebraic
Geometry. Book in preparation.
- G
- Gräbe, H.-G.: The tangent cone algorithm and
homogenization. To appear.
- GM
- Gebauer, R.; Möller, M.: On an installation of
Buchberger's Algorithm. J. Symbolic Computation (1988) 6, 275-286.
- GMNRT
- Giovini, A.; Mora, T.; Niesi, G.; Robbiano, L.;
Traverso, C.: ``One sugar cube, please'' or selection strategies in the
Buchberger algorithm. Proceedings of the 1991 ISSAC, 55-63.
- Gr
- Greuel, G.-M.: Constant Milnor number implies constant
multiplicity for quasihomogeneous singularities. Manuscr. Math. 56,
159-166 (1986).
- LS
- La Scala, R.: An algorithm for complexes. Preprint
Univ. Pisa (1993).
- L
- Lazard, D.: Gröbner bases, Gaussian elimination, and
resolution of systems of algebraic equations. Proc. EUROCAL 83, LN Comp. Sci. 162, 146-156.
- LS
- Lê D. T.; Saito, K: La constance du nombre de Milnor
donne des bonnes stratifications. CRAS Paris, 277, 793-795 (1973).
- Ma
- Matsumura, H.: Commutative ring theory. Cambridge
University Press (1989).
- M1
- Mora, T.: An algorithm to compute the equations of tangent
cones. Proc. EUROCAM 82, Springer Lecture Notes in Computer Science (1982).
- M2
- Mora, T.: Seven variations on standard bases. Preprint,
Univ. Genova (1988).
- M2
- Mora, T.: Seven variations on standard bases. Preprint,
Univ. Genova (1988).
- M3
- Mora, T.: La Queste del Saint Graal: a computational
approach to local algebra. Discrete Applied Math. 33, 161-190 (1991).
- MM
- Möller, H.M.; Mora, T.: Computational aspects of
reduction strategies to construct resolutions of monomial ideals. Proc. AAECC 2, Lecture Notes in Computer Science 228 (1986).
- MMT
- Möller, H.M.; Mora, T.; Traverso, C.: Gröbner bases
computation using syzygies. Proc. of ISSAC 1992.
- MPT
- Mora, T.; Pfister, G.; Traverso, C.: An introduction to
the tangent cone algorithm . Advances in Computing research, Issues in
Robotics and nonlinear geometry (6) 199-270 (1992).
- OS
- O'Shea, D.: Topologically trivial deformations of isolated
quasihomogeneous hypersurface singularities are equimultiple. Proc. Amer. Math. Soc. 101, 260-262 (1987).
- Po
- Pohl, W.: About the weighted ecart and the weighted sugarMethod for computing standard bases.
Preprint, Univ. Kaiserslautern, 1994.
- PS
- Pfister, G.; Schönemann, H.: Singularities with exact
Poincaré complex but not quasihomogeneous. Rev. Mat. de la Univ. Complutense de Madrid 2 (1989).
- R
- Robbiano, L.: Termorderings on the polynomial ring.
Proceedings of EUROCAL 85, Lecture Notes in Computer Science 204,
513-517 (1985).
- S1
- Schreyer, F.-O.: Die Berechnung von Syzygien mit dem
verallgemeinerten Weierstrassschen Divisionssatz. Diplomarbeit, Hamburg
(1980).
- S2
- Schreyer, F.-O.: A standard basis approach to syzygies of
canonical curves. J. reine angew. Math. 421, 83-123 (1991).
- Z
- Zariski, O.: Some open questions in the theory of
singularities. Bull. Amer. Math. Soc. 77, 481-491 (1971).
- Zi
- Zimnol, M.: Beispiele algebraischer Reduktionsstrukturen.
Diplomarbeit, Kaiserslautern (1987).
| ZCA Home |
Reports |