next up previous contents
Next: About this document ... Up: Standard bases, syzygies and Previous: 6. The Weyl algebra

Bibliography

AK
Altmann, A.; Kleiman, S.: Introduction to Grothendieck Duality Theory. Lect. Notes in Math. 146, Springer 1970.

AMR
Alonso, M.E.; Mora, T.; Raimondo, M.: Local decomposition algorithms. In: Proc. AAECC Tokyo 1990, Lect. Notes Comp. Sci. 508 208 - 221 (1991).

Ba
Bayer, D.: The division algorithm and the Hilbert scheme. Thesis, Harvard Univ. 1982.

BS
Bayer, D.; Stillman, M.: Macaulay (Version 3.0). A computer algebra system for algebraic geometry.

BW
Becker, T.; Weispfenning, V.: Gröbner Bases. A computational approach to commutative algebra. Springer-Verlag GTM 141 (1991).

B1
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Thesis, Univ. Innsbruck, 1965.

B2
Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory, in N.K Bose (ed.) Recent trends in multidimensional system theory, Reidel (1985).

E
Eisenbud, D.: Commutative Algebra with a view toward Algebraic Geometry. Book in preparation.

G
Gräbe, H.-G.: The tangent cone algorithm and homogenization. To appear.

GM
Gebauer, R.; Möller, M.: On an installation of Buchberger's Algorithm. J. Symbolic Computation (1988) 6, 275-286.

GMNRT
Giovini, A.; Mora, T.; Niesi, G.; Robbiano, L.; Traverso, C.: ``One sugar cube, please'' or selection strategies in the Buchberger algorithm. Proceedings of the 1991 ISSAC, 55-63.

Gr
Greuel, G.-M.: Constant Milnor number implies constant multiplicity for quasihomogeneous singularities. Manuscr. Math. 56, 159-166 (1986).

LS
La Scala, R.: An algorithm for complexes. Preprint Univ. Pisa (1993).

L
Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. Proc. EUROCAL 83, LN Comp. Sci. 162, 146-156.

LS
Lê D. T.; Saito, K: La constance du nombre de Milnor donne des bonnes stratifications. CRAS Paris, 277, 793-795 (1973).

Ma
Matsumura, H.: Commutative ring theory. Cambridge University Press (1989).

M1
Mora, T.: An algorithm to compute the equations of tangent cones. Proc. EUROCAM 82, Springer Lecture Notes in Computer Science (1982).

M2
Mora, T.: Seven variations on standard bases. Preprint, Univ. Genova (1988).

M2
Mora, T.: Seven variations on standard bases. Preprint, Univ. Genova (1988).

M3
Mora, T.: La Queste del Saint Graal: a computational approach to local algebra. Discrete Applied Math. 33, 161-190 (1991).

MM
Möller, H.M.; Mora, T.: Computational aspects of reduction strategies to construct resolutions of monomial ideals. Proc. AAECC 2, Lecture Notes in Computer Science 228 (1986).

MMT
Möller, H.M.; Mora, T.; Traverso, C.: Gröbner bases computation using syzygies. Proc. of ISSAC 1992.

MPT
Mora, T.; Pfister, G.; Traverso, C.: An introduction to the tangent cone algorithm . Advances in Computing research, Issues in Robotics and nonlinear geometry (6) 199-270 (1992).

OS
O'Shea, D.: Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple. Proc. Amer. Math. Soc. 101, 260-262 (1987).

Po
Pohl, W.: About the weighted ecart and the weighted sugarMethod for computing standard bases. Preprint, Univ. Kaiserslautern, 1994.

PS
Pfister, G.; Schönemann, H.: Singularities with exact Poincaré complex but not quasihomogeneous. Rev. Mat. de la Univ. Complutense de Madrid 2 (1989).

R
Robbiano, L.: Termorderings on the polynomial ring. Proceedings of EUROCAL 85, Lecture Notes in Computer Science 204, 513-517 (1985).

S1
Schreyer, F.-O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrassschen Divisionssatz. Diplomarbeit, Hamburg (1980).

S2
Schreyer, F.-O.: A standard basis approach to syzygies of canonical curves. J. reine angew. Math. 421, 83-123 (1991).

Z
Zariski, O.: Some open questions in the theory of singularities. Bull. Amer. Math. Soc. 77, 481-491 (1971).

Zi
Zimnol, M.: Beispiele algebraischer Reduktionsstrukturen. Diplomarbeit, Kaiserslautern (1987).


| ZCA Home | Reports |