next up previous
Next: 3. Row-minimal matrices Up: Splitting algorithm for vector Previous: 1. Introduction and notation

  
2. Block type Bruhat decomposition

For the convenience of the reader, we include some elementary, well-known facts from linear algebra which we shall need.

 

(2.1) Fix an integer $ k \in \{ 1, \ldots , r\! -\! 1 \} $ and let

\begin{displaymath}{\,I\!\!\!\!G}={\,I\!\!\!\!G}_{(k)}=
\left\{
\left(
\be...
... \bigg\vert \ S \in Gl_k (R), \ W \in Gl_{r-k}(R)
\right\}.
\end{displaymath}

After a permutation of rows (or columns), any regular matrix will belong to $ {\,I\!\!\!\!G} $.
Consider the following subgroups of Glr contained in $ {\,I\!\!\!\!G} $:

\begin{eqnarray*}I\!\!D= I\!\!D^{(k)} & = & \left\{
\left(
\begin{array}{rl}...
...
\right) \bigg\vert V \in \mbox{Mat}\,(r\!-\!k,k)
\right\},
\end{eqnarray*}


where I always denotes the unit matrix of the corresponding size.

 

(2.2) The following lema will be verified by direct computation:

Lemma 1  
  Using the notation above,
(i1) $I\!\!D\subseteq {\em N}({I\!\!B}_+) \cap {\em N}({I\!\!B}_-) $,
(i2) $\,I\!\!\!\!G= {\,I\!\!\!\!G}^{-1} $,
(i3) $\,I\!\!\!\!G\subseteq I\!\!D\cdot I\!\!B_+ \cdot I\!\!B_- \cap I\!\!D\cdot I\!\!B_+ \cdot I\!\!B_- $.

Here $N( \ )$ denotes the normalizer in Glr(R).
(i1) Just check the following identities:

\begin{displaymath}\left(
\begin{array}{rl}
S & 0 \\
0 & W
\end{array} \r...
...( \begin{array}{rl}
I & 0 \\
V & I
\end{array}
\right)
\end{displaymath}


\begin{displaymath}= \left( \begin{array}{cr}
I & 0 \\
WVS^{-1} & I
\end{ar...
...left( \begin{array}{rl}
S & 0 \\
0 & W
\end{array} \right)
\end{displaymath}

(i2) From the identity

\begin{eqnarray*}\left( \begin{array}{rl}
S & T \\
V & W
\end{array}
\rig...
...t( \begin{array}{rl}
I & 0 \\
0 & I
\end{array}
\right),
\end{eqnarray*}


assuming that the first matrix is in $ {\,I\!\!\!\!G} $, we obtain T'=-S-1 T W' and V'=-W-1VS'; hence, SS'-TW-1 VS'=I. Thus, S' is invertible and $ \tilde S :=S-TW^{-1}V $ is its inverse. Similarly, $ \tilde W :=W-VS^{-1}T $ is the inverse of W' .
(i3) Using the notation of (i2) we obtain

\begin{eqnarray*}\left( \begin{array}{rr}
S & T \\
V & W \end{array}
\right...
...begin{array}{rc}
I & S^{-1}T \\
0 & I \end{array}
\right).
\end{eqnarray*}


 

(2.3) Fix a k-subset J of row indices $ \{ 1,...,r \} $. Let QJ be the submatrix of Q formed by those rows of Q whose index belongs to J. Then $ {\cal M}_J (Q):=\langle Q_J \rangle \subseteq R^k $ is invariant under equivalence of matrices. After a certain permutation of rows of Q, it is enough to consider for simplicity only the special cases $ J_0=\{1,...,k\}$, $J'_0=\{k\!+\!1,...,r\} $
next up previous
Next: 3. Row-minimal matrices Up: Splitting algorithm for vector Previous: 1. Introduction and notation
| ZCA Home | Reports |