next up previous
Next: 5. Criteria for row-minimality Up: Splitting algorithm for vector Previous: 3. Row-minimal matrices

4. Splitting criteria

 

(4.1) Next we want to characterize those row-minimal matrices belonging to a decomposable module. The idea comes from the fact that the canonical homomorphism $R^r \longrightarrow R^k / {\cal M}(Q) \oplus R^{r-k} / {\cal M}'(Q)$ factors via M and that the induced surjection $M \longrightarrow R^k / {\cal M}(Q) \oplus R^{r-k} /
{\cal M}'(Q)$ is an isomorphism. Hence, it reflects a direct sum decomposition of M if and only if Q is equivalent to a block diagonal matrix Q0. Then Q is necessarily row-minimal with respect to J0 and J'0.

Proposition 6  
  If Q is row-minimal, then $M= \mbox{coker}\; Q$ is decomposable if and only if for some permutation $ \sigma , \quad P_{\sigma}Q \sim Q_0 $.

Assume M splits. Then we know $ \tilde U Q \sim Q_0 $ and, for some permutation $ \sigma $, $\tilde UP_{\sigma^{-1}} \in {\,I\!\!\!\!G} $; i.e., $ P_{\sigma} Q \sim UQ_0$ and $ U = P_{\sigma} \tilde U^{-1} \in {\,I\!\!\!\!G}.$ By Proposition 5(i2), we obtain

\begin{displaymath}{\cal M}'(P_{\sigma}Q) \supseteq
\left\{ \underline y \in R^...
... \langle P_{\sigma} Q \rangle \right\} \cong {\cal M}' (Q_0).
\end{displaymath}

The same holds for J'0 , because Q is J'0-row-minimal, too; that is,

\begin{displaymath}{\cal M}(P_{\sigma}Q) \supseteq
\left\{ \underline{x} \in R^...
...n \langle
P_{\sigma} Q \rangle \right\} \cong {\cal M}(Q_0).
\end{displaymath}

But then the composition of the canonical surjection

\begin{displaymath}M \longrightarrow R^k / {\cal M}(P_{\sigma}Q) \oplus R^{r-k} / {\cal M}'(P_{\sigma}Q)
\end{displaymath}

with

\begin{displaymath}R^k / {\cal M}(P_{\sigma}Q) \oplus R^{r-k} / {\cal M}'(P_{\si...
...
R^k / {\cal M}(Q_0) \oplus R^{r-k} / {\cal M}'(Q_0)
\cong M
\end{displaymath}

must be an isomorphism, showing $P_{\sigma}Q \sim Q_0$.
Note: $
{\cal M}(P_{\sigma} Q) $ and ${\cal M}' (P_{\sigma} Q) $ are computed by a standard basis computation with respect to a certain module ordering in the components. So we simply have to check whether

\begin{displaymath}P_{\sigma} Q =
\left( \begin{array}{rr}
A & 0 \\
0 & D
...
...,\ A:= {\cal M}(P_{\sigma} Q), \ D:= {\cal M}' (P_{\sigma} Q)
\end{displaymath}

has a solution X, which corresponds to a simple syzygy computation.

 

(4.2) Before computing a solution X, it is necessary for Q to be row-minimal, which may be tested using methods discussed in the next section. Usually Q is not row-minimal, in which case we shall use an algorithm to transform Q into an equivalent and J0-row-minimal matrix. But we do not know a procedure to obtain row-minimality for all subsets immediately. Hence we shall formulate a second version of the splitting criteria.

Proposition 7  
If Q is J0-row-minimal, then

\begin{displaymath}Q \sim U Q_0 , \ U \in {\,I\!\!\!\!G} \qquad \mbox{if and only if} \qquad Q \sim UQ_0 , \ U \in {I\!\!B_-}. \end{displaymath}

By Proposition 5, it follows that

\begin{displaymath}U = \left( \begin{array}{rr}
I & 0 \\
V & I \end{array}
...
...\begin{array}{cc}
A' & 0 \\
C' & D' \end{array}
\right) ,
\end{displaymath}

then $\langle A' \rangle = \langle \tilde A \rangle, \ \tilde A :=SA $ and $ \langle D' \rangle = \langle \tilde D \rangle , \ \tilde D:= WD$. Therefore

\begin{displaymath}\left( \begin{array}{cc}
A' & 0 \\
C'-VA' & D' \end{array}...
... \tilde A & T \tilde D \\
0 & \tilde D \end{array}
\right)
\end{displaymath}

and $ \langle T\tilde D \rangle \subseteq \langle A' \rangle = \langle \tilde A\rangle $, giving

\begin{displaymath}\left( \begin{array}{cc}
\tilde A & T \tilde D \\
0 & \til...
...( \begin{array}{cc}
A' & 0 \\
0 & D' \end{array}
\right),
\end{displaymath}

from which it may be concluded that

\begin{displaymath}Q \sim
\left( \begin{array}{rr}
I & 0 \\
V & I \end{arra...
...ray}{rr}
I & 0 \\
V & I \end{array}
\right) \in I\!\!B_-.
\end{displaymath}

The other direction is obvious. Note:
$
\left( \begin{array}{cc}
A' & 0 \\
C'-VA' & D'
\end{array}
\right)
\sim \left(
\begin{array}{cc}
A' & 0 \\
0 & D'
\end{array} \right)
$ if and only if C' - VA' = D'V' for some V'; i.e. we obtain

Corollary 8  
 If Q is J0-row-minimal, then for an ordered standard basis $ Q' = \left(
\begin{array}{cc}
A' & 0 \\
C' & D'
\end{array} \right) $ of Q we have:
$ Q \sim UQ_0 , \ U \in {\,I\!\!\!\!G} \quad $ if and only if $\quad$ the equation VA'+D' V'=C' has a solution (V, V').

Deciding the solvability of the above equation is reduced to a lifting computation: Let $A^{\ast}$ and $D^{\ast}$ be matrices corresponding to $\mbox{Hom}\,(-,A')$ and $\mbox{Hom}\,(D',-)$, and let [V], [V'], [C'] denote flattenings to a column vector of V, V', C', respectively. Then we obtain

\begin{displaymath}(A^{\ast}\ D^{\ast}) \cdot
\left( \begin{array}{r}
\mbox{}[V] \\
\mbox{}[V'] \end{array}
\right) = [C'];
\end{displaymath}

that is, [C'] can be lifted to $(A^{\ast}\ D^{\ast})$ if and only if the equation has a solution.


next up previous
Next: 5. Criteria for row-minimality Up: Splitting algorithm for vector Previous: 3. Row-minimal matrices
| ZCA Home | Reports |