next up previous
Next: About this document ... Up: A Note on Nielsen Previous: 5. Conclusions

Bibliography

1
J. Avenhaus and K. Madlener.
The Nielsen reduction and p-complete problems in free groups.
Theoretical Computer Science, 32:61-76, 1984.

2
B. Benninghofen, S. Kemmerich, and M.M. Richter.
Systems of Reductions.
LNCS 277. Springer, 1987.

3
R. Book and F. Otto.
String Rewriting Systems.
Springer, 1993.

4
M. A. Borges and M. Borges.
Gröbner bases property on elimination ideal in the noncommutative case.
In B. Buchberger and F. Winkler, editors, Gröbner Bases and Applications (Proc. of the Conference 33 Years of Gröbner Bases), volume 251 of London Mathematical Society Lecture Notes Series, page to appear. Cambridge University Press, 1998.

5
M. A. Borges, M. Borges, and T. Mora.
Non-commutative gröbner bases and fglm techniques.
Draft, 1998.

6
B. Buchberger.
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal.
PhD thesis, Universität Innsbruck, 1965.

7
B. Buchberger and M. Möller.
The construction of multivariate polynomials with preassigned zeroes.
In EUROCAM, LNCS 144, pages 24-31. Springer, 1982.

8
J. C. Faugère, P. Gianni, D. Lazard, and T. Mora.
Efficient computation of zero-dimensional Gröbner bases by change of ordering.
Journal of Symbolic Computation, 16:329-344, 1993.

9
G. Hermann.
Die Frage der endlich vielen Schritte in der Theorie der Polynomideale.
Mathematische Annalen, 95:737-788, 1926.

10
D. L. Johnson.
Presentation of Groups.
Cambridge University Press, 1976.

11
A. Kandri-Rody and V. Weispfenning.
Non-commutative Gröbner bases in algebras of solvable type.
Journal of Symbolic Computation, 9:1-26, 1990.

12
D. Knuth and P. Bendix.
Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press, Oxford, 1970.

13
N. Kuhn, K. Madlener, and F. Otto.
Computing presentations for subgroups of polycyclic groups and of context-free groups.
Applicable Algebra in Engineering, Communication and Computing, 5:287-316, 1994.

14
R. C. Lyndon and P. E. Schupp.
Combinatorial Group Theory.
Springer, 1977.

15
K. Madlener and B. Reinert.
Computing Gröbner bases in monoid and group rings.
In M. Bronstein, editor, Proc. ISSAC'93, pages 254-263. ACM, 1993.

16
K. Madlener and B. Reinert.
String rewriting and Gröbner bases - a general approach to monoid and group rings.
In Proceedings of the Workshop on Symbolic Rewriting Techniques, Monte Verita, 1995, pages 127-180. Birkhäuser, 1998.

17
K. Madlener and B. Reinert.
Relating rewriting techniques on monoids and rings: Congruences on monoids and ideals in monoid rings.
Theoretical Computer Science, to appear.

18
S. Margolis, J. Meakin, and M. Sapir.
Algorithmic problems in groups, semigroups and inverse monoids.
In J. Fountain, editor, Semigroups, Formal Languages and Groups, pages 147-214. Kluwer Academic Press, 1993.

19
M. G. Marinari, H. M. Möller, and T. Mora.
Gröbner bases of ideals defined by functionals with an application to ideals of projective points.
Applicable Algebra in Engineering, Communication and Computing, 4:103-145, 1993.

20
T. Mora.
Gröbner bases and the word problem.
Genova, 1987.

21
J. Neubueser.
An elementary introduction to coset table methods in computational group theory.
In C. M. Campbell and E. F. Robertson, editors, Groups St. Andrews 1981, L.M.S. Lecture Notes 71, pages 1-45. Cambridge University Press, 1982.

22
J. Nielsen.
Om Regning med ikke kommutative Faktoren og dens Anvendelse i Gruppeteorien.
Mat. Tidsskr. B., pages 77-94, 1921.

23
B. Reinert.
On Gröbner Bases in Monoid and Group Rings.
PhD thesis, Universität Kaiserslautern, 1995.

24
B. Reinert, T. Mora, and K. Madlener.
Coset enumeration - a comparison of methods.
Technical report, Universität Kaiserslautern, 1998.

25
C. Sims.
Computation with Finitely Presented Groups.
Cambridge University Press, 1994.

26
J. Todd and H. Coxeter.
A practical method for enumerating cosets of a finite abstract group.
In Proc. Edinburgh Math. Soc., volume 5, pages 26-34, 1936.

27
A. Zharkov and Yu. Blinkov.
Involution approach to solving systems of algebraic equations.
In Proc. IMACS'93, pages 11-16, 1993.



| ZCA Home | Reports |