next up previous
Next: 14.9 Up: 14. Computing examples using Previous: 14.7


14.8 $Neu \vert <a, c>$


Table 26: Orderings for $Neu \vert <a, c>$
Ordering Precedence on $\Sigma$
kbo-A (a 1) $>$ (c 1) $>$ (c 1) $>$ (A 6) $>$ (B 1) $>$ (C 1)
kbo-B (a 1) $>$ (b 1) $>$ (c 1) $>$ (A 1) $>$ (B 6) $>$ (C 1)
kbo-C (a 1) $>$ (b 1) $>$ (c 1) $>$ (A 1) $>$ (B 1) $>$ (C 6)
kbo-a (a 6) $>$ (b 1) $>$ (c 1) $>$ (A 1) $>$ (B 1) $>$ (C 1)
kbo-b (a 1) $>$ (b 6) $>$ (c 1) $>$ (A 1) $>$ (B 1) $>$ (C 1)
kbo-c (a 1) $>$ (b 1) $>$ (c 6) $>$ (A 1) $>$ (B 1) $>$ (C 1)
ll-CcBbAa C $>$ c $>$ B $>$ b $>$ A $>$ a
syl-l-bBaAcC b $>$ B $>$ a $>$ A $>$ c $>$ C
syl-r-bBaAcC b $>$ B $>$ a $>$ A $>$ c $>$ C



Table 27: Maximal/Total number of cosets defined - $Neu \vert <a, c>$
Ordering NONE P-ALL P-G P-R I-ALL I-R I-R-P
kbo-A 2356 3607 1701 3524 4404 1873 3596
kbo-B 2053 3491 1955 2700 2053 2308 3537
kbo-C 2134 3492 2326 2611 2134 2910 3498
kbo-a 2473 3354 17874 1917 2061 2682 3353
kbo-b 4107 3491 1640 2559 4107 2650 3488
kbo-c 2254 2740 1775 1917 2254 2455 2808
ll-CcBbAa 1683 3828 2699 3361 9589 1637 3869
syl-l-bBaAcC 1899 2390 1726 1835 1899 1899 2387
syl-r-bBaAcC 2323 6856 5897 4923 2323 2321 6907
Ordering NONE P-ALL P-G P-R I-ALL I-R I-R-P
kbo-A 2369 3717 1795 3633 4473 1898 3705
kbo-B 2075 3607 2061 2819 2077 2413 3667
kbo-C 2151 3627 2441 2720 2157 3068 3631
kbo-a 2488 3458 18426 1988 2080 2744 3457
kbo-b 4119 3616 1738 2652 4119 2680 3612
kbo-c 2264 2815 1860 1994 2268 2517 2889
ll-CcBbAa 1697 3924 2784 3455 10066 1671 3964
syl-l-bBaAcC 2158 2553 1945 2033 2158 2158 2550
syl-r-bBaAcC 2614 7148 6357 5300 2614 2623 7214



next up previous
Next: 14.9 Up: 14. Computing examples using Previous: 14.7
| ZCA Home | Reports |