next up previous
Next: About this document ... Up: The SYMBOLICDATA Project Towards Previous: Acknowledgments

Bibliography

1
BINI, D., AND MOURRAIN, B.
Polynomial test suite, 1996.
See www-sop.inria.fr/saga/POL.

2
BOEGE, W., GEBAUER, R., AND KREDEL, H.
Some examples for solving systems of algebraic equations by calculating Gröbner bases.
J. Symb. Comp. 2 (1986), 83 - 98.

3
CHOU, S.-C.
Mechanical geometry theorem proving.
Reidel, Dortrecht, 1988.

4
CZAPOR, S., AND GEDDES, K.
On implementing Buchberger's algorithm for Gröbner bases.
In Proc. SYMSAC'86 (1986), Waterloo, Canada, pp. 233 - 238.

5
GRÄBE, H.-G.
GEOMETRY - a small package for mechanized plane geometry manipulations, 1998.
See www.informatik.uni-leipzig.de/SPMtilde;compalg/software.

6
GREUEL, G.-M., PFISTER, G., AND SCHÖNEMANN, H.
Singular version 1.2 User Manual .
In Reports On Computer Algebra, no. 21. Centre for Computer Algebra, University of Kaiserslautern, June 1998.
www.mathematik.uni-kl.de/~zca/Singular.

7
The Medicis project, 1998.
See www.medicis.polytechnique.fr.

8
PoSSo: Polynomial System Solving, 1993 - 1995.
See posso.dm.unipi.it.

9
The SYMBOLICDATA project, 2000.
Soonly available at www.SymbolicData.org. For the moment consult www.informatik.uni-leipzig.de/SPMtilde;graebe/SymbolicData.

10
VON ZUR GATHEN, J.
A factorization challenge.
SIGSAM Bulletin 26, 2 (1992), 22-24.

11
WANG, D.
Irreducible decomposition of algebraic varieties via characteristic sets and Gröbner bases.
Computer Aided Geometric Design 9 (1992), 471 - 484.

12
WANG, D.
Solving polynomial equations: characteristic sets and triangular systems.
Math. and Comp. in Simulation 42 (1996), 339 - 351.

13
WESTER, M., Ed.
Computer Algebra Systems: A Practical Guide.
Wiley, Chichester, 1999.

14
ZIMMERMANN, P., BERNARDIN, L., AND MONAGAN, M.
Polynomial factorization challenges, 1996.
Poster at ISSAC-96, see also www.inf.ethz.ch/personal/bernardi.



| ZCA Home | Reports |